Библиография
Вулкан:
Группировать:  
Выбрать:     Все     "     0     1     2     3     4     5     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W          А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Ю     Я     
Записей: 2735
 A
A dangling slab, amplified arc volcanism, mantle flow, and seismic anisotropy in the Kamchatka plate corner (2002)
Park J., Levin V., Brandon M., Lees J., Peyton V., Gordeev E., Ozerov A. A dangling slab, amplified arc volcanism, mantle flow, and seismic anisotropy in the Kamchatka plate corner / Plate Boundary Zones. AGU Geodynamics Series. 2002. Vol. 30. P. 295-324.
A full holocene tephrochronology for the Kamchatsky Peninsula region: Applications from Kamchatka to North America (2017)
Ponomareva Vera, Portnyagin Maxim, Pendea I. Florin, Zelenin Egor, Bourgeois Joanne, Pinegina Tatiana, Kozhurin Andrey A full holocene tephrochronology for the Kamchatsky Peninsula region: Applications from Kamchatka to North America // Quaternary Science Reviews. 2017. Vol. 168. P. 101-122. doi:10.1016/j.quascirev.2017.04.031.
   Аннотация
Geochemically fingerprinted widespread tephra layers serve as excellent marker horizons which can directly link and synchronize disparate sedimentary archives and be used for dating various deposits related to climate shifts, faulting events, tsunami, and human occupation. In addition, tephras represent records of explosive volcanic activity and permit assessment of regional ashfall hazard. In this paper we report a detailed Holocene tephrochronological model developed for the Kamchatsky Peninsula region of eastern Kamchatka (NW Pacific) based on ∼2800 new electron microprobe analyses of single glass shards from tephra samples collected in the area as well as on previously published data. Tephra ages are modeled based on a compilation of 223 14C dates, including published dates for Shiveluch proximal tephra sequence and regional marker tephras; new AMS 14C dates; and modeled calibrated ages from the Krutoberegovo key site. The main source volcanoes for tephra in the region are Shiveluch and Kliuchevskoi located 60–100 km to the west. In addition, local tephra sequences contain two tephras from the Plosky volcanic massif and three regional marker tephras from Ksudach and Avachinsky volcanoes located in the Eastern volcanic front of Kamchatka. This tephrochronological framework contributes to the combined history of environmental change, tectonic events, and volcanic impact in the study area and farther afield. This study is another step in the construction of the Kamchatka-wide Holocene tephrochronological framework under the same methodological umbrella. Our dataset provides a research reference for tephra and cryptotephra studies in the northwest Pacific, the Bering Sea, and North America.
A geochemical model for fumaroles of the Mutnovsky volcano, Kamchatka, USSR (1992)
Taran Yu.A., Pilipenko V.P., Rozhkov A.M., Vakin E.A. A geochemical model for fumaroles of the Mutnovsky volcano, Kamchatka, USSR // Journal of Volcanology and Geothermal Research. 1992. Vol. 49. № 3–4. P. 269 - 283. doi: 10.1016/0377-0273(92)90018-9.
   Аннотация
On the basis of the chemical, isotopic and thermodynamic characteristics of fluids sampled between 1964 and 1989 a genetic model description is given for fumaroles of the Mutnovsky volcano. There are three individual groups of fumaroles in the Mutnovsky crater which show stable activity for a long period of time: “the Active Funnel” (temperatures exceed 600°C), the “Upper Field” (up to 320°C) and the “Bottom Field” (from 100 to 150°C). The three principal zones of emission have different gas composition, water isotopic composition, radioactivity and 3He/4He ratios. The abundance of magmatic components in the high-temperature fumaroles of the “Active Funnel” is much higher than those in gases from the other groups. Emission rate of SO2 from the “Active Funnel” is about 200 t/d, which requires complete degassing as a minimum of 1 km3 of magma every 20 years. Fluids of the “Upper Field” contain up to 80% of steam from the Mutnovsky geothermal system. Temperature variations of the “Bottom Field” fumaroles (from 97°C before 1982 to 151°C in 1989) result from changes in hydrological conditions in the crater. Evaporation of high-saline acid brine which is formed in the interior of the volcano is responsible for the composition of the “Bottom Field” gas-steam discharges.
A giant landslide-explosion circue and debris avalanche at Bakening volcano, Kamchatka (1999)
Melekestsev I.V., Dirksen O.V., Girina O.A. A giant landslide-explosion circue and debris avalanche at Bakening volcano, Kamchatka // Volcanology and Seismology. 1999. Vol. 20. № 3. P. 265-279.
   Аннотация
This study revealed that the giant cirque of Bakening Volcano had been produced by its eruption ca. 8000-8500 carbon-14 year ago. The eruption is supposed to have been heralded by a large earthquake (M > 7) resulting in the collapse and slide of the SE sector of the cone. The landslide unroofed the hydrothermal system and triggered an explosion which was followed by an ash-and-block pyroclastic flow. A rockslide avalanche rolled down into the valley of the Srednyaya Avacha River and travelled as far as 10-11 km along it. The avalanche deposited its debris material over an area of 18-20 km2 measuring 0.4-0.5 km3 in volume. These deposits dammed the river, produced two lakes (Bezymyannoe and Verkhneavacha), and gave birth to a large lahar which traveled along the valley much farther.
A guide to the volcanoes of southern Kamchatka, Russia (2001)
Waltham Tony A guide to the volcanoes of southern Kamchatka, Russia // Proceedings of the Geologists' Association. 2001. Vol. 112. № 1. P. 67 - 78. doi: 10.1016/S0016-7878(01)80051-1.
   Аннотация
The remote sub-arctic wilderness of Kamchatka contains a line of active volcanoes above the Pacific Ocean plate subduction zone. This guide is based on the itinerary of the 1999 GA excursion to sites around Petropavlovsk. Descriptions cover the Uzon caldera and its Valley of Geysers, and the volcanoes of Avacha, Karimsky, Gorely and Mutnovsky.
A multi-sensor satellite assessment of SO2 emissions from the 2012–13 eruption of Plosky Tolbachik volcano, Kamchatka (2015)
Telling J., Flower V.J.B., Carn S.A. A multi-sensor satellite assessment of SO2 emissions from the 2012–13 eruption of Plosky Tolbachik volcano, Kamchatka // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 98 - 106. doi: 10.1016/j.jvolgeores.2015.07.010.
   Аннотация
Abstract Prolonged basaltic effusive eruptions at high latitudes can have significant atmospheric and environmental impacts, but can be challenging to observe in winter conditions. Here, we use multi-sensor satellite data to assess sulfur dioxide (SO2) emissions from the 2012–2013 eruption of Plosky Tolbachik volcano (Kamchatka), which lasted ~ 9–10 months and erupted ~ 0.55 km3 DRE. Observations from the Ozone Monitoring Instrument (OMI), the Ozone Mapping and Profiler Suite (OMPS), the Atmospheric Infrared Sounder (AIRS), and the Moderate Resolution Imaging Spectroradiometer (MODIS) are used to evaluate volcanic activity, SO2 emissions and heat flux associated with the effusion of lava flows. Gaps in the primary OMI SO2 time-series dataset occurred due to instrument limitations and adverse meteorological conditions. Four methods were tested to assess how efficiently they could fill these data gaps and improve estimates of total SO2 emissions. When available, using data from other {SO2} observing instruments was the most comprehensive way to address these data gaps. Satellite measurements yield a total SO2 loading of ~ 200 kt SO2 during the 10-month Plosky Tolbachik eruption, although actual SO2 emissions may have been greater. Based on the satellite SO2 measurements, the Fast Fourier Transform (FFT) multi-taper method (MTM) was used to analyze cyclical behavior in the complete data series and a 55-day cycle potentially attributable to the eruptive behavior of Plosky Tolbachik during the 2012 – 2013 eruption was identified.
A petrological and geochemical study on time-series samples from Klyuchevskoy volcano, Kamchatka arc (2017)
Bergal-Kuvikas Olga, Nakagawa Mitsuhiro, Kuritani Takeshi, Muravyev Yaroslav, Malik Nataliya, Klimenko Elena, Amma-Miyasaka Mizuho, Matsumoto Akiko, Shimada Shunjiro A petrological and geochemical study on time-series samples from Klyuchevskoy volcano, Kamchatka arc // Contributions to Mineralogy and Petrology. 2017. Vol. 172. № 5. doi:10.1007/s00410-017-1347-z.
A thermal anomaly as a precursor for predictions of strong explosive volcanic eruptions (2013)
Girina O.A. A thermal anomaly as a precursor for predictions of strong explosive volcanic eruptions // Abstracts. IAVCEI 2013 Scientific Assembly, July 20 - 24. Kagoshima, Japan: 2013. № 1357-1.
AIRBORNE ASH HAZARD MITIGATION IN THE NORTH PACIFIC: A MULTI-AGENCY, INTERNATIONAL COLLABORATION (2004)
Neal C.A., Girina O.A., Ferguson G., Osiensky J. AIRBORNE ASH HAZARD MITIGATION IN THE NORTH PACIFIC: A MULTI-AGENCY, INTERNATIONAL COLLABORATION // Proceedings of the 2nd International Conference on Volcanic Ash and Aviation Safety, June 21-24, 2004, Session 2. Alexandria, Virginia (USA): 2004. P. 55
ASTER and field observations of the 24 December 2006 eruption of Bezymianny Volcano, Russia (2008)
Carter A.J., Girina O.A., Ramsey M.S., Demyanchuk Yu.V. ASTER and field observations of the 24 December 2006 eruption of Bezymianny Volcano, Russia // Remote Sensing of Environment. 2008. Vol. 112. P. 2569-2577. https://doi.org/10.1016/j.rse.2007.12.001.
   Аннотация
An explosive eruption occurred at Bezymianny Volcano (Kamchatka Peninsula, Russia) on 24 December 2006 at 09:17 (UTC). Seismicity
increased three weeks prior to the large eruption, which produced a 12–15 km above sea level (ASL) ash column. We present field observations from 27 December 2006 and 2 March 2007, combined with satellite data collected from 8 October 2006 to 11 April 2007 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), as part of the instrument's rapid-response program to volcanic eruptions. Pixel-integrated brightness temperatures were calculated from both ASTER 90 m/pixel thermal infrared (TIR) data as well as 30 m/pixel shortwave infrared (SWIR) data. Four days prior to the eruption, the maximum TIR temperature was 45 °C above the average background temperature (−33 °C) at the dome, which we interpret was a precursory signal, and had dropped to 8 °C above background by 18 March 2007. On 20 December 2006, there was also a clear thermal signal in the SWIR data of 128 °C using ASTER Band 7 (2.26 μm). The maximum SWIR temperature was 181 °C on the lava dome on 4 January 2007, decreasing below the detection limit of the SWIR data by 11 April 2007. On 4 January 2007 a hot linear feature was observed at the dome in the SWIR data, which produced a maximum temperature of 700 °C for the hot fraction of the pixel using the dual band technique. This suggests that magmatic temperatures were present at the dome at this time, consistent with the emplacement of a new lava lobe following the eruption. The eruption also produced a large, 6.5 km long by up to 425 m wide pyroclastic flow (PF) deposit that was channelled into a valley to the south–southeast. The PF deposit cooled over the following three months but remained elevated above the average background temperature. A second field investigation in March 2007 revealed a still-warm PF deposit that contained fumaroles. It was also observed that the upper dome morphology had changed in the past year, with a new lava lobe having in-filled the crater that formed following the 9 May 2006 eruption. These data provide further information on effusive and explosive activity at Bezymianny using quantitative remote sensing data and reinforced by field observations to assist in pre-eruption detection as well as post-eruption monitoring.