Главная БиблиографияПо дате публикаций
Вулкан: Расширенный поиск

Количество записей: 1899
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
Braitseva O.A., Melekestsev I.V., Ponomareva V.V., Kirianov V.Yu. The last caldera-forming eruption in Kamchatka: Ksudach volcano, 1700-1800 14C-years ago // Volcanology and Seismology. 1995. V. 17. № 2. P. 147-168.    Аннотация
A catastrophic explosive eruption occurred 1700-1800 14C-years ago at Ksudach Volcano in Kamchatka. It was one of the AD greatest Plinian-type eruptions. It erupted 18-19 km3 of pyroclastic material and produced a collapse caldera 4 × 6.5 km in size and 6.5-7 km3 in volume. The eruptive column rose to a height of 23 km. It was the last caldera-forming eruption in the Kuril-Kamchatka region. It resembled an eruption that occurred at Krakatau in 1883 in type and size. The eruption was bound to have a climatic impact, impaired the Earth's ozone layer, and produced an acid peak in the Greenland ice sheet. -from Journal summary
http://repo.kscnet.ru/904/ [связанный ресурс]
Braitseva O.A., Melekestsev I.V., Ponomareva V.V., Sulerzhitskii L.D. The ages of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia // Bulletin of Volcanology. 1995. V. 57. № 6. P. 383-402. doi: 10.1007/BF00300984.    Аннотация
The ages of most of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region have been determined by extensive geological, geomorphological, tephrochronological and isotopic geochronological studies, including more than 600 14C dates. Eight ‘Krakatoa-type’ and three ‘Hawaiian-type’ calderas and no less than three large explosive craters formed here during the Holocene. Most of the Late Pleistocene Krakatoa-type calderas were established around 30 000–40 000 years ago. The active volcanoes are geologically very young, with maximum ages of about 40 000–50 000 years. The overwhelming majority of recently active volcanic cones originated at the very end of the Late Pleistocene or in the Holocene. These studies show that all Holocene stratovolcanoes in Kamchatka were emplaced in the Holocene only in the Eastern volcanic belt. Periods of synchronous, intensified Holocene volcanic activity occurred within the time intervals of 7500–7800 and 1300–1800 14C years BP.
Braitseva O.A., Melekestsev I.V., Ponomareva V.V., Sulerzhitskiy L.D., Litasova S.N. Ages of active volcanoes in the Kuril-Kamchatka region // Volcanology and Seismology. 1995. V. 16. № 4-5. P. 341-369.    Аннотация
The births (ages) of most of the active volcanoes, calderas, and large craters produced by caldera-resembling eruptions (subcaldera craters) were dated as a result of geological, geomorphological, tephrochronological, and isotopic studies. The dated active volcanoes were found to be fairly young formations, the age of the oldest being 40-50 thousand years. Most of the presently highly active volcanoes had been born at the very end of the late Pleistocene or during the Holocene. Carbon-14 ages were determined for the majority of the Holocene volcanoes. The periods of time when Holocene volcanoes had been synchronously active were 7500-7800 and 1300-1800 years ago. -from Journal summary

По результатам геолого-геоморфологических, тефрохронологических и изотопно-геохронологических исследований на базе более 600 14С-дат определено время возникновения (возраст) большинства действующих вулканов, кальдер и кратеров субкальдерных извержений Курило-Камчатского региона. Установлено, что действующие вулканы являются достаточно молодыми образованиями с максимальным возрастом 40-50 тыс. лет. Подавляющее большинство наиболее активных в настоящее время вулканов начало формироваться в самом конце позднего плейстоцена и в голоцене. Для большинства вулканов, возникших в голоцене, определен их 14С-возраст. Установлено, что все полигенные стратовулканы Камчатки в голоцене возникали только в пределах ее Восточной вулканической зоны. Определен 14С-возраст большинства позднеплейстоценовых кальдер, которые сформировались Преимущественно к интервале времени 30-40 тыс. лет назад. Датированы все голоценовые кальдеры и ряд кратеров субкальдерных извержений. Выявлены периоды синхронной активизации действующих вулканов в голоцене в интервале времени 7500-7800 и 1300-1800 лет назад.
http://repo.kscnet.ru/926/ [связанный ресурс]
Girina O.A. Convective Differentiation of Pyroclastic from Andesitic Volcanoes // IUGG. XXI General Assembly. Colorado. 1995. P. B 419
Girina O.A. Granulometric composition of pyroclastics from andesite volcanoes of Kamchatka // 5 Zonenshain conference on plate tectonics. Moscow. 1995. P. 11
Girina O.A. Pyroclastic deposits of the different stages the Bezymianny volcano activity // The ’95 International workshop on volcanoes commemorating the 5-th anniversary of Mt. Showa-Shinzan. 1995. P. P 43
Girina O.A. Pyroclastic surge deposits of Bezymianny volcano // IUGG. XXI General Assembly. Colorado. 1995. P. B 419
Kersting Annie B., Arculus Richard J. Pb isotope composition of Klyuchevskoy volcano, Kamchatka and North Pacific sediments: Implications for magma genesis and crustal recycling in the Kamchatkan arc // Earth and Planetary Science Letters. 1995. V. 136. № 3–4. P. 133 - 148. doi: 10.1016/0012-821X(95)00196-J.    Аннотация
Pb isotope data are used to constrain the chemical contribution of the subducted components in the recycling beneath Klyuchevskoy volcano, the most active volcano in the Kamchatkan arc. The Pb isotope ratios of Klyuchevskoy basalts (206Pb/204Pb= 18.26–18.30, 207/Pb204Pb= 15.45–15.48, 208/Pb204Pb= 37.83–37.91) define a narrow range that falls within the Pacific mid-ocean ridge basalt (MORB) field and are among the least radiogenic island arc basalts measured to date. These data are similar to data from three other Quaternary Kamchatkan volcanoes: Tolbachik, Kumroch-Shish, and Maly Semiachik. In contrast, North Pacific sediments (primarily siliceous oozes) collected parallel to the Kamchatkan trench during Ocean Drilling Program Leg 145, have Pb isotope ratios (206Pb/204Pb= 18.51–18.78, 207Pb/204Pb= 15.56–15.64, 208Pb/204Pb= 38.49–38.75) that are more radiogenic than either the Klyuchevskoy basalts or Pacific MORB. Incorporation of even a small amount of sediment in the source of the Klyuchevskoy magmas would shift the Pb isotope ratios of the erupted basalts from the MORB field to more radiogenic values. The absence of 10Be and elevated Pb isotope ratios in the Kamchatkan volcanic lavas, despite the presence of distinctively radiogenic Pb in the North Pacific sediments makes it unlikely that sediments or sediment-derived fluids are involved in the source magmas beneath Kamchatka. The Kamchatkan arc thus represents an “end-member” whereby little or no sediment is involved in terms of elemental recycling and arc magma genesis. The major and trace elements, Pb, Sr and Nd isotope data of the Kamchatkan basalts are most consistently explained if derived from a fluid-fluxed, peridotitic mantle wedge source, wherein the fluid composition is dominantly controlled by dehydration of altered oceanic crust, imparting a radiogenic 87Sr/86Sr, and MORB-like Pb isotope signature to the mantle source. The erupted Klyuchevskoy lavas preserve a slab signature derived from incompatible elements that are strongly partitioned into the fluid. The 30 km of arc crust through which the Klyuchevskoy magmas traverse prior to eruption is not composed of older crust, but must be juvenile, similar in isotopic composition to MORB.
Maximov A.P. Rheological burst as mechanism of andesitic pyroclastics formation // IUGG XXI Gener. Assemb.. 1995, Boulder, USA. 1995. P. B411
Melekestsev Ivan V., Ponomareva Vera V., Volynets Oleg N. Kizimen volcano, Kamchatka — A future Mount St. Helens? // Journal of Volcanology and Geothermal Research. 1995. V. 65. № 3-4. P. 205-226.    Аннотация
We studied the tectonic setting, morphology, geologic structure, history of eruptive activity and evolution of the composition of the erupted material of Kizimen volcano, Kamchatka, from the moment of its origination 11–12 thousand years ago to the present time. Four cycles, each 2–3.5 thousand years long, were distinguished that characterize the activity of the volcano. All of the largest eruptions were dated, and their parameters determined. We also estimated the volume and the mass of the erupted products, the volcanic intensity of eruption of material during periods of high activity, and the amount of material the volcano ejected at different stages of its formation. It has been shown that the evolution of the composition of the rocks erupted (from dacite to basaltic andesite) takes place as a result of mixing of dacitic and basaltic magma. It is suggested that future eruptions that may take place at Kizimen may be similar to those at Bandai (1888) and Mount St. Helens (1980) volcanoes.

Taran Yu.A., Hedenquist J.W., Korzhinsky M.A., Tkachenko S.I., Shmulovich K.I. Geochemistry of magmatic gases from Kudryavy volcano, Iturup, Kuril Islands // Geochimica et Cosmochimica Acta. 1995. V. 59. № 9. P. 1749 - 1761. doi: 10.1016/0016-7037(95)00079-F.    Аннотация
Volcanic vapors were collected during 1990–1993 from the summit crater of Kudryavy, a basaltic andesite volcano on Iturup island in the Kuril arc. The highest temperature (700–940°C) fumarolic discharges are water rich (94–98 mole% H2O and have δD values of −20 to −12%o. The chemical and water isotope compositions of the vapors (temperature of thirteen samples, 940 to 130°C) show a simple trend of mixing between hot magmatic fluid and meteoric water; the magmatic parent vapor is similar in composition to altered seawater. The origin of this endmember is not known; it may be connate seawater, or possibly caused by the shallow incorporation of seawater into the magmatic-hydrothermal system. Samples of condensed vapor from 535 to 940°C fumaroles have major element trends indicating contamination by wall-rock particles. However, the enrichment factors (relative to the host rock) of many of the trace elements indicate another source; these elements likely derive from a degassing magma. The strongest temperature dependence is for Re, Mo, W, Cu, and Co; highly volatile elements such as Cl, I, F, Bi, Cd, B, and Br show little temperature dependence. The Re abundance in high-temperature condensates is 2–10 ppb, sufficient to form the pure Re sulfide recently discovered in sublimates of Kudryavy. Anomalously high I concentrations (1–12 ppm) may be caused by magma-marine sediment interaction, as Br/I ratios are similar to those in marine sediments.

The high-temperature (>700°C) fumaroles have a relatively constant composition (∼2 mol% each C and S species, with SO2/H2S ratio of about 3:1, and 0.5 mol% HCl); as temperature decreases, both St and CI are depleted, most likely due to formation of native S and HCl absorption by condensed liquid, in addition to the dilution by meteoric water. Thermochemical evaluation of the high-temperature gas compositions indicates they are close to equilibrium mixtures, apart from minor loss of H2O and oxidation of CO and H2 during sampling. Calculation to an assumed equilibrium state indicates temperatures from 705 to 987°C. At high temperature (≈900°C), the redox states are close to the overlap of mineral (quartz-fayalite-magnetite and nickel-nickel oxide) and gas (H2OH2SO2H2S) buffer curves, due to heterogeneous reaction between the melt and gas species. At lower temperatures (<800°C), the trend of the redox state is similar to the gas buffer curve, probably caused by homogeneous reaction among gas species in a closed system during vapor ascent.
Taran Yuri, Yurova L.M. Volcanic-hydrothermal system of Baransky volcano, Iturup, Kurile islands // IUGG XXI General Assembley. 1995. P. VA41C - 6.
Адушкин В.В., Зыков Ю.Н., Иванов Б.А. Численное моделирование лавинообразного обрушения вулкана Корякский // Вулканология и сейсмология. 1995. № 6. С. 82-93.
Богатиков О.А., Хренов А.П., Ховавко С.А., Мальцев А.Л. Состав, структура и оценка количества аэрозолей в эксплозиях вулканов центрального типа (Камчатка) // Геология и геофизика. 1995. Т. 36. № 8. С. 111-116.
Брайцева О.А., Мелекесцев И.В., Пономарева В.В., Кирьянов В.Ю. Последнее кальдерообразующее извержение на Камчатке (вулкан Ксудач) 1700-1800 14С-лет назад // Вулканология и сейсмология. 1995. № 2. С. 30-49.    Аннотация
Катастрофическое эксплозивное извержение, происшедшее 1700-1800 14С-лет назад на вулкане Ксудач - крупнейшее плинианское извержение нашей эры (18-19 км3 пирокластики: 15 км3 тефры, 3-4 км3 материала пирокластических потоков; размер кальдеры обрушения 4 x 6,5 км, объем полости 6,5-7 км3) и последнее кальдерообразующее извержение в Курило-Камчатском регионе с высотой эруптивной колонны, достигшей 23 км. По типу и параметрам оно сходно с извержением вулкана Кракатау в 1883 г. Ось пеплопада была направлена на север. Тефра прослежена на расстояние более 1000 км. Извержение началось как фреато-магматическое, затем процесс приобрел ритмический характер: в каждом ритме за первичным выбросом пемзовой тефры следовало формирование пирокластических потоков длиной до 20 км, сопровождавшихся пирокластическими волнами пепловых облаков. Продукты извержения имели риолит-дацитовый состав, который оставался неизменным в ходе извержения. На посткальдерной стадии, при формировании в кальдере конуса Штюбеля, на поверхность стал поступать андезитобазальтовый материал. Предполагается, что спусковым механизмом для начала извержения было внедрение свежей магмы основного состава и смешение ее с кислой магмой существовавшего ранее очага. Извержение должно было оказать влияние на климат и состояние озонового слоя Земли и найти отражение в виде кислотного пика в Гренландском ледниковом щите.

The largest Plinian eruption of our era and the latest caldera-forming eruption in the Kurile-Kamchatka region occurred 1700-1800 14C yr BP from the Ksudach volcano. This catastrophic explosive eruption is similar in type and characteristics to the 1883 Krakatau eruption. The volume of pyroclastics ejected was 18-19 km3, including 15 km3 of tephra and 3-4 km of pyroclastic flows. The eruptive column reached 23 km height. A collapse caldera was 4 X 6,5 km in size with a cavity volume of 6.5-7 km3. Tephra was deposited to the north of the volcano to a distance of more than 1000 km. Pyroclastic flows accompanied by ash cloud pyroclastic surges were as long as 20 km. The eruption was first phreatomagmatic, then it became rhythmic, and each rhythm began with the pumiceous tephra eruption followed by the pyroclastic flow formation. Erupted products were rhyolite-dacite remaining invariable during the whole eruption. At the post-caldera stage when the Shtyubel cone started to form within the caldera the basaltic-andesite material began to come to the surface. The driving mechanism of the onset of the eruption is suggested to be an intrusion of magma of basic composition and its mixing with acid magma from a previously existed chamber. The eruption had substantial environmental impact and may have produced a large acidity peak in the Greenland glacial shield.
http://repo.kscnet.ru/1109/ [связанный ресурс]
Горельчик В.И., Гарбузова В.Т., Дрознин Д.В., Левина В.И., Фирстов П.П., Чубарова О.С., Широков В.А. Вулкан Шивелуч: глубинное строение и прогноз извержения по данным детальной сейсмичности 1962—1994 гг. // Вулканология и сейсмология. 1995. № 4-5. С. 54-75.    Аннотация
На основании детальных сейсмологических наблюдений 1962—1994 гг. исследованы глубинное строение, геометрия сейсмофокального слоя, система магматического питания вулкана Шивелуч, особенности сейсмических проявлений в земной коре и верхней мантии в ходе экструзивно-эксплозивного извержения 1980—1994 гг., рассмотрены вопросы прогноза извержений. Показано, что под вулканом Шивелуч на глубинах 100—200 км сейсмофокальный слой падает под углом 70°. На основании выявленной взаимосвязи сейсмичности на глубинах 105—120 км с фазой экструзивного извержения вулкана в 1980—1994 гг. сделан вывод, что на глубинах не менее 100 км происходит выплавление первичных магм, периодически подпитывающих коровый очаг. Показано, что усиление экструзивно-эксплозивной деятельности вулкана предваряется и сопровождается увеличением числа и энергии вулканических землетрясений как непосредственно под куполом, так и в зонах коровых разломов северо-западного простирания. Описан методический подход, использованный при прогнозе наиболее сильного после 1964 г. извержения вулкана Шивелуч в апреле 1993 г. Дан среднесрочный прогноз возможного усиления активности вулкана в апреле — июле 1995 г.

Based on a detailed seismological observations from 1962 through 1994, the deep structure, focal layer geometry, magmatic feeding system of the Shiveluch volcano are investigated. Beneath the Shiveluch volcano, a focal layer deepens at an angle of 70 at depths of 100—200 km. Based on the established interrelation between the seismicity at depths of 105—120 km and a phase of extrusive volcano eruption in 1980 through 1994, a conclusion has been made that melting of primary magmas, periodically feeding the crustal chamber, occurs at depths at least 100 km. Increase of extrusive-explosive activity of the volcano is preceded and accompanied by the increasing number and energy of volcanic earthquakes both beneath the dome and in the zones of crustal faults of northwestern trend. A description is given of the methods used in the successful short-term prediction of the eruption in April 1993 which has been the most powerful since 1964. A mean-term prediction of possible increase of the volcano activity in April — July of 1995 is made.
Иванов А.И., Федотов С.А. О прорыве оболочки магматического очага // Вулканология и сейсмология. 1995. № 2. С. 3-13.    Аннотация
Рассмотрена задача об условиях нарушения сплошности среды, окружающей магматический очаг сферической формы, под воздействием избыточного внутреннего давления в нем. Условия нарушения сплошности формулируются на основе энтропийного критерия разрушения, построенного на базе модели ползучести, предложенной С. К. Годуновым. Найдены соотношения, определяющие критическую величину давления в очаге и время достижения критического состояния. Рассмотрены возможности применения этих результатов для прогнозирования вулканических извержений.

We consider a problem of disturbance of a continuous medium which surrounds a magma chamber or channel. This disturbance is caused by excess internal pressure in the magma chamber. We used Godunov's entropy criterion to estimate the value of the shear strain required. Relations were found to determine critical pressure in the chamber and the time needed to achieve the critical state. The zone of rocks which surrounds the magma chamber and which is located next the melting zone has to be fracturing-resistant.
Иванов Б.В. Петролого-геохимические особенности андезитов Карымского вулкана как индикаторы типов извержений // Вулканология и сейсмология. 1995. № 4-5. С. 85-94.
Иванов Б.В., Флеров Г.Б., Масуренков Ю.П., Кирьянов В.Ю., Мелекесцев И.В., Таран Ю.А., Овсянников А.А. Динамика и состав продуктов извержения Авачинского вулкана в 1991 г. // Вулканология и сейсмология. 1995. № 4-5. С. 5-27.
Кожемяка Н.Н. Долгоживущие вулканические центры Камчатки: типы построек, длительность формирования, объем вулканитов, продуктивность, баланс вещества, тектоническое положение // Вулканология и сейсмология. 1995. № 6. С. 3-19.    Аннотация
Уточнены имеющиеся в литературе и получены новые количественные показатели вулканических центров Камчатки с длительностью развития 350-700 ... 1500-2500 тыс. лет: общий объем вулканитов, средняя продуктивность, продолжительность формирования и др. Впервые рассчитан баланс вещества; оценены абсолютные объемы основных, средних и кислых пород и их соотношения в процентах от всей массы продуктов извержений. Получены расчетные средние показатели для камчатского долгоживущего центра в отдельных вулканических зонах и по региону Камчатки в целом. Выявлены главные вулканические и магматические центры с наивысшей суммарной продуктивностью. Показана решающая роль основных магм в вулканическом процессе и структурообразовании.

The following new quantitative indices have been obtained for the Kamchatkan volcanic centers with duration of development of 350-700 ... 1500-2500 thousand years; total volume of volcanics, average productivity, duration of formation, etc. Balance of substance has been calculated for the first lime: absolute volumes of basic, mean, and acid rocks and their ralios in percents of the whole mass of the eruption products. Calculative average indices have been obtained for the Kamchatkan long-lived centers both in separate volcanic zones and Kamchatka region as a whole. Principal volcanic and magmatic centers with maximum summary productivity have been revealed. The decisive role of basic magmas in volcanic process and structure formation is shown.


Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2018. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
©Design: roman@kscnet.ru