Group by:  
Jump to:
Records: 2397
Edwards Ben, Belousov Alexander, Belousova Marina, Volynets Anna, Melnikov Dmitry, Chirkov Sergey, Senyukov Sergey, Gordeev Evgenii, Muraviev Yaroslav, Izbekov Pavel, Demianchuk Yury Another “Great Tolbachik” Eruption? // Eos, Transactions American Geophysical Union. 2013. Vol. 94. № 21. P. 189-191. doi:10.1002/2013EO210002.    Annotation
On 27 November 2012 at 1715 local time, a focused swarm of earthquakes was interpreted as the start of a new ongoing eruption on the south flank (Tolbachinsky Dol) of Plosky Tolbachik volcano in east central Kamchatka, Russia (Figure 1a) [Samoylenko et al., 2012]. Visual observations on 29 November showed ash shooting from two fractures as well as long, rapidly moving lava flows. Although the initial ash clouds reached 6 kilometers in height, subsequent ashfall has been limited to the area around the main vents, and no permanent settlements are in danger from advancing lava flows (the closest settlements are about 40 kilometers from the volcano). Including this eruption, six different volcanoes are presently active in Kamchatka.
Gavrilenko M., Carr M., Herzberg C., Ozerov A. Pyroxenite is a possible cause of enriched magmas in island arc settings: Gorely volcano (Kamchatka) // Abstract V31A-2666 presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 9-13 Dec.. 2013.
Girina O.A. A thermal anomaly as a precursor for predictions of strong explosive volcanic eruptions // Abstracts. IAVCEI 2013 Scientific Assembly, July 20 - 24. Kagoshima, Japan: 2013. № 1357-1.
Girina O.A. Chronology of Bezymianny Volcano activity, 1956-2010 // Journal of Volcanology and Geothermal Research. 2013. Vol. 263. P. 22-41. doi: 10.1016/j.jvolgeores.2013.05.002.    Annotation
Bezymianny Volcano is one of the most active volcanoes in the world. In 1955, for the first time in history, Bezymianny started to erupt and after six months produced a catastrophic eruption with a total volume of eruptive products of more than 3 km3. Following explosive eruption, a lava dome began to grow in the resulting caldera. Lava dome growth continued intermittently for the next 57 years and continues today. During this extended period of lava dome growth, 44 Vulcanian-type strong explosive eruptions occurred between 1965 and 2012. This paper presents a summary of activity at Bezymianny Volcano from 1956 to 2010 with a focus on descriptive details for each event.
Girina O.A., Manevich A.G., Melnikov D.V., Nuzhdaev A.A., Demyanchuk Yu.V., Petrova E. Explosive Eruptions of Kamchatkan Volcanoes in 2012 and Danger to Aviation // EGU General Assembly 2013. Geophysical Research Abstracts. Vienna, Austria: 2013. Vol. V15. № 6760-1.
Global Volcanism Program. Volcanoes of the World, v. 4.9.1 (17 Sep 2020). 2013. doi: 10.5479/si.GVP.VOTW4-2013.
Gorbach Natalia, Portnyagin Maxim, Tembrel Igor Volcanic structure and composition of Old Shiveluch volcano, Kamchatka // Journal of Volcanology and Geothermal Research. 2013. Vol. 263. P. 193-208. doi:10.1016/j.jvolgeores.2012.12.012.
Gorokhova N.V., Melnik O.E., Plechov P.Yu., Shcherbakov V.D. Numerical simulation of plagioclase rim growth during magma ascent at Bezymianny Volcano, Kamchatka // Journal of Volcanology and Geothermal Research. 2013. Vol. 263. P. 172 - 181. doi: 10.1016/j.jvolgeores.2013.03.020.    Annotation
Slow CaAl-NaSi interdiffusion in plagioclase crystals preserves chemical zoning of plagioclase in detail, which, along with strong dependence of anorthite content in plagioclase on melt composition, pressure, and temperature, make this mineral an important source of information on magma processes. A numerical model of zoned crystal growth is developed in the paper. The model is based on equations of multicomponent diffusion with diagonal cross-component diffusion terms and accounts for mass conservation on the melt–crystal interface and growth rate controlled by undercooling. The model is applied to the data of plagioclase rim zoning from several recent Bezymianny Volcano (Kamchatka) eruptions. We show that an equilibrium growth model cannot explain crystallization of naturally observed plagioclase during magma ascent. The developed non-equilibrium model reproduced natural plagioclase zoning and allowed magma ascent rates to be constrained. Matching of natural and simulated zoning suggests ascent from 100 to 50 MPa during 15–20 days. Magma ascent rate from 50 MPa to the surface varies from eruption to eruption: plagioclase zoning from the December 2006 eruption suggests ascent to the surface in less than 1 day, whereas plagioclase zoning from March 2000 and May 2007 eruptions are better explained by magma ascent over periods of more than 30 days). Based on comparison of diffusion coefficients for individual elements a mechanism of atomic diffusion during plagioclase crystallization is proposed.
Grapenthin Ronni, Freymueller Jeffrey T., Serovetnikov Sergey S. Surface deformation of Bezymianny Volcano, Kamchatka, recorded by GPS: The eruptions from 2005 to 2010 and long-term, long-wavelength subsidence // Journal of Volcanology and Geothermal Research. 2013. Vol. 263. P. 58-74. doi:10.1016/j.jvolgeores.2012.11.012.    Annotation
Since Bezymianny Volcano resumed its activity in 1956, eruptions have been frequent; recently with up to 1–2 explosive events per year. To investigate deformation related to this activity we installed a GPS network of 8 continuous and 6 campaign stations around Bezymianny. The two striking observations for 2005–2010 are (1) rapid and continuous network-wide subsidence between 8 and 12 mm/yr, which appears to affect KAMNET stations more than 40 km away where we observe 4–5 mm/yr of subsidence, and (2) only the summit station BZ09 shows slight deviations from the average motion in the north component at times of eruptions.
The network-wide subsidence cannot be explained by tectonic deformation related to the build-up of interseismic strain due to subduction of the Pacific plate. A first order model of surface loading by eruptive products of the Kluchevskoy Group of Volcanoes also explains only a fraction of the subsidence. However, a deep sill at about 30 km under Kluchevskoy that constantly discharges material fits our observations well. The sill is constrained by deep seismicity which suggests 9.5 km width, 12.7 km length, and a 13° dip-angle to the south-east. We infer a closing rate of 0.22 m/yr, which implies a volume loss of 0.027 km3/yr (0.16 m/yr and 0.019 km3/yr considering surface loading). Additional stations in the near and far field are required to uniquely resolve the spatial extent and likely partitioning of this source.
We explain the eruption related deformation at BZ09 with a very shallow reservoir, likely within Bezymianny's edifice at a depth between 0.25 km and 1.5 km with a volume change of 1–4 × 10− 4 km3. Much of the material erupted at Bezymianny may be sourced from deeper mid-crustal reservoirs with co-eruptive volume changes at or below the detection limit of the GPS network. Installation of more sensitive instruments such as tiltmeters would allow resolving of subtle co-eruptive motion.
Ionov D.A., Bénard A., Plechov P.Yu., Shcherbakov V.D. Along-arc variations in lithospheric mantle compositions in Kamchatka, Russia: First trace element data on mantle xenoliths from the Klyuchevskoy Group volcanoes // Journal of Volcanology and Geothermal Research. 2013. Vol. 263. P. 122 - 131. doi: 10.1016/j.jvolgeores.2012.12.022.    Annotation
Abstract We provide results of a detailed study of the first peridotite xenoliths of proven mantle origin reported from Bezymyanny volcano in the Klyuchevskoy Group, northern Kamchatka arc. The xenoliths are coarse spinel harzburgites made up mainly of Mg-rich olivine as well as subhedral orthopyroxene (opx) and Cr-rich spinel, and also contain fine-grained interstitial pyroxenes, amphibole and feldspar. The samples are unique in preserving the evidence for both initial arc mantle substrate produced by high-degree melt extraction and subsequent enrichment events. We show that the textures, modal and major oxide compositions of the Bezymyanny xenoliths are generally similar to those of spinel harzburgite xenoliths from Avacha volcano in southern Kamchatka. However, coarse opx from the Bezymyanny harzburgites has higher abundances of light and medium rare earth elements and other highly incompatible elements than coarse opx from the Avacha harzburgites. We infer that (1) the sub-arc lithospheric mantle beneath both Avacha and Bezymyanny (and possibly between these volcanoes) consists predominantly of harzburgitic melting residues, which experienced metasomatism by slab-related fluids or low-fraction, fluid-rich melts and (2) the degrees of metasomatism are higher beneath Bezymyanny. By contrast, xenolith suites from Shiveluch and Kharchinsky volcanoes 50–100 km north of the Klyuchevskoy Group include abundant cumulates and products of reaction of mantle rocks with silicate melts at high melt/rock ratios. The high melt flux through the lithospheric mantle beneath Shiveluch and Kharchinsky may be related to the asthenospheric flow around the northern edge of the sinking Pacific plate; lateral propagation of fluids in the mantle wedge south of the plate edge may contribute to metasomatism in the mantle lithosphere beneath the Klyuchevskoy Group volcanoes.

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2021. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal from your own website.