Main BibliographyПо названиям
 
 Bibliography
Volcano:

 
Jump to:     All     "     0     1     2     3     4     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W          А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Э     Ю     Я     
Records: 2157
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
 V
VIIRS Nightfire Remote Sensing Volcanoes (2017)
Trifonov Grigory, Zhizhin Mikhail, Melnikov Dmitry, Poyda Alexey VIIRS Nightfire Remote Sensing Volcanoes // Procedia Computer Science. 2017. V. 119. P. 307-314. doi: 10.1016/j.procs.2017.11.189.    Annotation
Satellite based remote sensing of active volcanoes has been performed in various forms since 1965. Compared to “on the ground” observations it lets data to be gathered globally at regular pace for long periods of time without the need for local maintenance. Currently existing publicly available volcanoes thermal activity monitoring systems rely on the detection algorithms narrowly specified for volcanoes temperature ranges and operate using the data from previous generation of sensors, which is supported with non-reserved constellation of two satellites. The presented work proposes pipeline (the sequence of actions) based on the clustering of the data received from the Nightfire thermal anomalies detection algorithm, which is not focused on the specific type of infrared sources. Pipeline has been tested on Kamchatka’s region 2016 year dataset and proved to produce sound results corresponding to manual observations.
VONA/KVERT Information Releases (2005)
VONA/KVERT Information Releases. 2005.
Variations of Volcanic Glass Composition Show Possible Mixing Event at the Beginning of 1996 Eruption of Karymsky Volcano, Kamchatka, Russia (1998)
Izbekov P., Eichelberger J., Ivanov B., Maximov A. Variations of Volcanic Glass Composition Show Possible Mixing Event at the Beginning of 1996 Eruption of Karymsky Volcano, Kamchatka, Russia // Trans. American Geophys. Union, Fall Meet. Suppl, Abstract . 1998. V. 79(45). P. V22B-10.
Video observations inside conduits of erupting geysers in Kamchatka, Russia, and their geological framework: Implications for the geyser mechanism (2013)
Belousov A., Belousova M., Nechayev A. Video observations inside conduits of erupting geysers in Kamchatka, Russia, and their geological framework: Implications for the geyser mechanism // Geology. 2013. V. 41. № 4. P. 387-390. doi:10.1130/G33366.1.
VolSatView Information System Capabilities for Studying Kamchatka and Northern Kuriles Volcanic Activity (2016)
Gordeev E.I., Loupian E.A., Girina O.A., Sorokin A.A. VolSatView Information System Capabilities for Studying Kamchatka and Northern Kuriles Volcanic Activity // Modern Information Technologies in Earth Sciences. Proc. of the VI International Conference, Yuzhno-Sakhalinsk, August 7-11, 2016. Vladivostok: Dalnauka. 2016. P. 19
Volatile (S, Cl and F) and fluid mobile trace element compositions in melt inclusions: implications for variable fluid sources across the Kamchatka arc (2007)
Churikova Tatiana, Wörner Gerhard, Mironov Nikita, Kronz Andreas Volatile (S, Cl and F) and fluid mobile trace element compositions in melt inclusions: implications for variable fluid sources across the Kamchatka arc // Contributions to Mineralogy and Petrology. 2007. V. 154. № 2. P. 217-239. doi:10.1007/s00410-007-0190-z.    Annotation
Volatile element, major and trace element compositions were measured in glass inclusions in olivine from samples across the Kamchatka arc. Glasses were analyzed in reheated melt inclusions by electron microprobe for major elements, S and Cl, trace elements and F were determined by SIMS. Volatile element–trace element ratios correlated with fluid-mobile elements (B, Li) suggesting successive changes and three distinct fluid compositions with increasing slab depth. The Eastern Volcanic arc Front (EVF) was dominated by fluid highly enriched in B, Cl and chalcophile elements and also LILE (U, Th, Ba, Pb), F, S and LREE (La, Ce). This arc-front fluid contributed less to magmas from the central volcanic zone and was not involved in back arc magmatism. The Central Kamchatka Depression (CKD) was dominated by a second fluid enriched in S and U, showing the highest S/K2O and U/Th ratios. Additionally this fluid was unusually enriched in 87Sr and 18O. In the back arc Sredinny Ridge (SR) a third fluid was observed, highly enriched in F, Li, and Be as well as LILE and LREE. We argue from the decoupling of B and Li that dehydration of different water-rich minerals at different depths explains the presence of different fluids across the Kamchatka arc. In the arc front, fluids were derived from amphibole and serpentine dehydration and probably were water-rich, low in silica and high in B, LILE, sulfur and chlorine. Large amounts of water produced high degrees of melting below the EVF and CKD. Fluids below the CKD were released at a depth between 100 and 200 km due to dehydration of lawsonite and phengite and probably were poorer in water and richer in silica. Fluids released at high pressure conditions below the back arc (SR) probably were much denser and dissolved significant amounts of silicate minerals, and potentially carried high amounts of LILE and HFSE.
Volcanic Explosions at Karymsky: A Broadband Experiment Around the cone (1997)
Lees J.M., Johnson J., Gordeev E.I., Batereau K., Ozerov A.Yu. Volcanic Explosions at Karymsky: A Broadband Experiment Around the cone // AGU Spring Meeting 1997 Abstracts. Baltimore, Maryland: AGU. 1997. P. S11C-06.
Volcanic activity at Sedankinsky Dol lava field, Sredinny Ridge, during the Holocene (Kamchatka, Russia) (2004)
Dirksen O.V., Bazanova L.I., Pletchov P.Yu., Portnyagin M.V., Bychkov K.A. Volcanic activity at Sedankinsky Dol lava field, Sredinny Ridge, during the Holocene (Kamchatka, Russia) // Abstracts. 4rd Biennial Workshop on Subduction Processes emphasizing the Kurile-Kamchatka-Aleutian Arcs (JKASP-4). Linkages among tectonics, seismicity, magma genesis, and eruption in volcanic arcs. August 21-27, 2004. Petropavlovsk-Kamchatsky: Institute of Volcanology and Seismology FEB RAS. 2004. P. 55
Volcanic edifice stability during cryptodome intrusion (2001)
Donnadieu Franck, Merle Olivier, Besson Jean-Claude Volcanic edifice stability during cryptodome intrusion // Bulletin of Volcanology. 2001. Т. 63. № 1. С. 61-72. doi:10.1007/s004450000122.    Annotation
Limit equilibrium analyses were applied to the 1980 Mount St. Helens and 1956 Bezymianny failures in order to examine the influence on stability of structural deformation produced by cryptodome emplacement. Weakening structures associated with the cryptodome include outward-dipping normal faults bounding a summit graben and a flat shear zone at the base of the bulged flank generated by lateral push of the magma. Together with the head of the magmatic body itself, these structures serve directly to localize failure along a critical surface with low stability deep within the interior of the edifice. This critical surface, with the safety coefficient reduced by 25–30%, is then very sensitive to stability condition variation, in particular to the pore-pressure ratio (ru) and seismicity coefficient (n). For ru=0.3, or n=0.2, the deep surface suffers catastrophic failure, removing a large volume of the edifice flank. In the case of Mount St. Helens, failure occurred within a material with angle of friction ~40°, cohesion in the range 105–106 Pa, and probably significant water pore pressure. On 18 May 1980, detachment of slide block I occurred along a newly formed rupture surface passing through the crest of the bulge. Although sliding of block I may have been helped by the basal shear zone, significant pore pressure and a triggering earthquake were required (ru=0.3 and n=0.2). Detachment of the second block was guided by the summit normal fault, the front of the cryptodome, and the basal shear zone. This occurred along a deep critical surface, which was on the verge of failure even before the 18 May 1980 earthquake. The stability of equivalent surfaces at Bezymianny Volcano appears significantly higher. Thus, although magma had already reached the surface, weaker materials, or higher pore pressure and/or seismic conditions were probably required to reach the rupture threshold. From our analysis, we find that deep-seated sector collapses formed by removing the edifice summit cannot generally result from a single slide. Cryptodome-induced deformation does, however, provide a deep potential slip surface. As previously thought, it may assist deep-seated sector collapse because it favors multiple retrogressive slides. This leads to explosive depressurization of the magmatic and hydrothermal systems, which undermines the edifice summit and produces secondary collapses and explosive blasts.
Volcanic eruptions and seismic activity at Klyuchevskoi, Bezymiannyi and Shiveluch in 1986-1987 (1991)
Zharinov N.A., Gorelchik V.I., Belousov A.B., Belousova M.G., Garbuzova V.T., Demyanchuk Yu.V., Zhdanova E.Yu. Volcanic eruptions and seismic activity at Klyuchevskoi, Bezymiannyi and Shiveluch in 1986-1987 // Volcanology and Seismology. 1991. V. 12. V. 3. P. 327-345.





 

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2019. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Design: roman@kscnet.ru