Библиография
Вулкан:
Группировать:  
Выбрать:     Все     "     0     1     2     3     4     5     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W          А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Ю     Я     
Записей: 2773
 T
Tephrochronological investigation at Dvuh-yurtochnoe lake area, Kamchatka: Numerous landslides and lake tsunami, and their environmental impacts (2011)
Dirksen O., van den Bogaard C., Danhara T., Diekmann B. Tephrochronological investigation at Dvuh-yurtochnoe lake area, Kamchatka: Numerous landslides and lake tsunami, and their environmental impacts // Quaternary International. 2011. Vol. 246. № 1-2. P. 298 - 311. doi: 10.1016/j.quaint.2011.08.032.
   Аннотация
Distal volcanic tephras in soil sections and lake sediments in the Dvuh-yurtochnoe (Two-Yurts) lake area, central Kamchatka, were investigated in order to provide a chronological framework for the reconstruction of late Quaternary landscape development. Mineralogical and geochemical data point to sources from 5 volcanoes. Ten tephra layers were identified and correlated to known eruptive events. The ages were corroborated by radiocarbon dating of the soil sections around Two-Yurts lake. These findings allow the reconstruction of regional paleoenvironmental change, recorded in the soil sections around Two-Yurts lake. During the Last Glacial Maximum (LGM) time, the area was affected by glacial advances that produced the glacial moraines at the eastern outlet of the lake. A large landslide, ca. 15,000–18,000 14C BP, dammed the valley and led to formation of Two-Yurts lake. Several more landslide events can be recognized in the Holocene, and one affected Two-Yurts lake ca. 3000 14C BP. This event produced a “tsunami”, documented by poorly sorted deposits with rounded pebbles in the onshore sections around the lake. In contrast to the soil sections, tephras buried in the “soupy” lacustrine sediments of Two-Yurts lake are not well preserved and show inconsistent age-depth relationships compared to those suggested by radiocarbon dating, due to sinking through the lake sediments. Nevertheless, tephrochronological data revealed the strong impact of terrestrial landslides on lake sedimentation.
Tephrostratigraphy and petrological study of Chikurachki and Fuss volcanoes, western Paramushir Island, northern Kurile Islands: Evaluation of Holocene eruptive activity and temporal change of magma system (2011)
Hasegawa Takeshi, Nakagawa Mitsuhiro, Yoshimoto Mitsuhiro, Ishizuka Yoshihiro, Hirose Wataru, Seki Sho-ichi, Ponomareva Vera, Rybin Alexander Tephrostratigraphy and petrological study of Chikurachki and Fuss volcanoes, western Paramushir Island, northern Kurile Islands: Evaluation of Holocene eruptive activity and temporal change of magma system // Quaternary International. 2011. Vol. 246. № 1–2. P. 278 - 297. doi: 10.1016/j.quaint.2011.06.047.
   Аннотация
A tephrostratigraphic and petrological study of the Chikurachki (1816 m)-Tatarinov-Lomonosov volcanic chain (CTL volcanic chain) and Fuss (1772 m), located at the southern part of Paramushir Island in the northern Kurile Islands, was carried out to reveal the explosive eruption history during the Holocene and the temporal change of the magma systems of these active volcanoes. Tephra successions were described at 54 sites, and more than 20 major eruptive units were identified, consisting of pumice fall, scoria fall and ash fall deposits, each of which are separated by paleosol or peat layers. The source volcano of each recognized tephra layer was confirmed by correlation with proximal deposits of each eruption center with respect to petrography and whole-rock and glass chemistry. The age of each layer was determined by radiocarbon dating and the stratigraphic relationship with the dated, widespread tephra from Kamchatka according to the thickness of paleosols bracketed between tephra layers. The Holocene activity in this region was initiated by eruptions from the Tatarinov and Lomonosov volcanoes. After the eruptions, the Fuss and Chikurachki volcanoes started their explosive activities at ca. 7.5 ka BP, soon after the deposition of widespread tephra from the Kurile Lake caldera in southern Kamchatka. Compared with Fuss located on the back-arc side, Chikurachki has frequent, repeated explosive and voluminous eruptions. Whole-rock compositions of the rocks of the CTL volcanic chain and Fuss are classified into medium-K and high-K groups, respectively. These suggest that magma systems beneath the CTL volcanic chain and Fuss differ from each other and have been independently constructed. The rocks of the Chikurachki volcano are basalt-basaltic andesite and have gradually evolved their chemical compositions; when graphed on a SiO2-oxide diagram, these form smooth trends from mafic to more felsic. This suggests that the magma system evolved mainly by fractional crystallization. In contrast, matrix glass chemistries for Fuss pumices are distinct for each eruption and show different K2O levels on a SiO2-K2O diagram. This implies that the magma system of Fuss has been frequently replaced. Both volcanoes have been active under the same subduction system. However, the Chikurachki volcano will continue eruptive activity under a stable magma system with a higher magma discharge rate, whereas Fuss may continue construction with an intermittent supply of distinct, small magma batches.
Testing of the Titanomagnetite Method to Detect Magmatic Chamber Depth at Avachinsky Stratovolcano and Tolbachik Fissure Eruption (2014)
Zubov A.G., Ananyev V.V. Testing of the Titanomagnetite Method to Detect Magmatic Chamber Depth at Avachinsky Stratovolcano and Tolbachik Fissure Eruption // 10th International Conference “PROBLEMS OF GEOCOSMOS”. Book of Abstracts. St. Petersburg, Petrodvorets, October 6-10, 2014. St. Peterburg: Физфак СПбГУ. 2014. P. 81
   Аннотация
Two volcanoes were tested using the titanomagnetite method in order to detect the magma chamber depth. Curie temperature of andesite tephra shows that the magmatic chamber was situated on the depth of 18±7 km under Avachinsky Volcano ~5 Ka ago, but one of the basalt-andesite tephra from Avachinsky results the chamber depth of 32±6 km ~3 Ka ago. This method applied to the lava from Tolbachik Fissure Eruption (TFE) shows a chamber depth of 47±5 km. This result is inconsistent slightly with the depth of 35±6 km obtained by our microzond analysing of element composition of titanomagnetite grains into lava sample from earlier phase of the same eruption. This two different results between TFE lava samples may occur from magma differentiation or this is a methodical or occasional error. To know true it needs a sample statistics. At present, more microzond data from Tolbachik Fissure Eruption are being analyzed.
The 15 March 2019 Bezymianny Volcano Explosive Eruption and Its Products (2020)
Girina O.A., Gorbach N.V., Davydova V.O., Melnikov D.V., Manevich T.M, Manevich A.G., Demyanchuk Yu.V. The 15 March 2019 Bezymianny Volcano Explosive Eruption and Its Products // Journal of Volcanology and Seismology. 2020. Vol. 14. № 6. P. 394-409. https://doi.org/10.1134/S0742046320060032.
   Аннотация
Bezymianny Volcano is one of the most active volcanoes in Kamchatka and in the world. This paper describes the preparation, behavior, products, dynamics, and the geological effect of the March 15, 2019 explosive eruption of the volcano, which was predicted 6.5 h before it began. The sequence of eruptive events was analyzed using data provided by video and satellite-based monitoring of the volcano; the quantitative characteristics for the distribution of pyroclastic deposits were obtained in the information system “Remote Monitoring of Activity of Volcanoes in Kamchatka and the Kurile Islands”. The explosions lifted ash to heights of 15 km above sea level (up to 12 km above the volcano), the eruptive cloud was moving northeastward and east from the volcano, the main ashfall area was 210 400 km2, including 15 000 km2 on land. Apart from tephra, the eruption produced pyroclastic flows and pyroclastic surges covering an area of 30 km2. The total volume of explosive products is estimated as 0.1–0.2 km3. The eruptive rocks are calc-alkaline moderate-K basaltic andesites (SiO2 = 54.84–56.29 wt %), they are the most mafic among all rocks of the current Bezymianny eruption cycle.
The 1972-1974 eruption of Klyuchevskoy volcano, Kamchatka (1981)
Ivanov B.V., Gorelchik V.I., Andreev V.N., Maksimov A.P., Stepanov V.V., Chirkov A.M. The 1972-1974 eruption of Klyuchevskoy volcano, Kamchatka // Bulletin Volcanologique. 1981. Vol. 44. Vol. 1. P. 1-10. doi: 10.1007/BF02598184.
   Аннотация
A new Klyuchevskoy volcano eruptive cycle encompasses terminal (March 30, 1972 to August 23, 1974) and lateral (August 23, 1974 to December, 1974) eruption stages. The terminal eruption stage resulted in lava flows and parasitic cones that formed on the south-western flank of the volcano.
Eruption products are moderately alkalic high-alumina olivine-bearing andesite-basalts. The terminal eruption stage was accompanied by volcanic earthquakes and volcanic tremor. The lateral eruption was accompanied by explosive earthquakes. Volcanic tremor was the most useful prognostic sign indicating the onset of the lateral eruption. Eruptive mechanisms are discussed.
The 1985 eruption of Bezymianny (1990)
Alidibirov M.A., Bogoyavlenskaya G.E., Kirsanov I.T., Firstov P.P., Girina O.A., Belousov A.B., Zhdanova E.Yu., Malyshev A.I. The 1985 eruption of Bezymianny // Volcanology and Seismology. 1990. Vol. 10. № 6. P. 839-863.
The 1996 Eruption of Karymsky Volcano and the Composition of its Products, Kamchatka, Russia (1997)
Ozerov A.Yu., Murav’ev Ya.D., Frisbie A.J. The 1996 Eruption of Karymsky Volcano and the Composition of its Products, Kamchatka, Russia // AGU Spring Meeting 1997 Abstracts. Baltimore, Maryland: AGU. 1997. P. V22A-04.
The 1996 subaqueous eruption at Academii Nauk volcano (Kamchatka) and its effects on Karymsky lake (2000)
Fazlullin S.M., Ushakov S.V., Shuvalov R.A., Aoki M., Nikolaeva A.G., Lupikina E.G. The 1996 subaqueous eruption at Academii Nauk volcano (Kamchatka) and its effects on Karymsky lake // Journal of Volcanology and Geothermal Research. 2000. Vol. 97. № 1–4. P. 181 - 193. doi: 10.1016/S0377-0273(99)00160-2.
   Аннотация
A subaqueous eruption in Karymsky lake in the Academii Nauk caldera dramatically changed its water column structure, water chemistry and biological system in less than 24 h, sending major floodwaves down the discharging river and eruption plumes with ash and gases high into the atmosphere. Prior to the eruption, the lake had a pH of about 7, was dominated by bicarbonate, and well stocked with fish, but turned in early 1996 into a stratified, initially steaming waterbody, dominated by sulfate with high Na and K levels, and devoid of fish. Blockage of the outlet led to rising waterlevels, followed by dam breakage and catastrophic water discharge. The total energy input during the eruption is estimated at about 1016 J. The stable isotope composition of the lake water remained dominated by the meteoric meltwaters after the eruption.
The 1996-2003 eruptions in the Akademii Nauk Caldera and at the Karymsky volcano, Kamchatka (2003)
Fedotov S.A., Ozerov A.Yu., Maguskin M.A., Dvigalo V.N., Grib E.N., Ivanov V.V. The 1996-2003 eruptions in the Akademii Nauk Caldera and at the Karymsky volcano, Kamchatka // IUGG-2003 Abstract. 2003. P. A.523
The 2001–2004 dome-forming eruption of Shiveluch volcano, Kamchatka: Observation, petrological investigation and numerical modelling (2006)
Dirksen O., Humphreys M.C.S., Pletchov P., Melnik O., Demyanchuk Y., Sparks R.S.J., Mahony S. The 2001–2004 dome-forming eruption of Shiveluch volcano, Kamchatka: Observation, petrological investigation and numerical modelling // Journal of Volcanology and Geothermal Research. 2006. Vol. 155. № 3–4. P. 201 - 226. doi: 10.1016/j.jvolgeores.2006.03.029.
   Аннотация
There have been three episodes of lava dome growth at Shiveluch volcano, Kamchatka since the Plinian explosive eruption in 1964. The episodes in 1980–1981, 1993–1995 and 2001–2004 have discharged at least 0.27 km3 of silicic andesite magma. A time-averaged mean extrusion rate of 0.2 m3/s is thus estimated for the last 40 years. Here the 2001–2004 activity is described and compared with the earlier episodes. The recent activity involved three pulses in extrusion rate and a transition to ongoing lava extrusion. Estimated magma temperatures are in the range 830 to 900 °C, with 850 °C as the best estimate, using the plagioclase−amphibole phenocryst assemblage and Fe−Ti oxides. Melt inclusions in amphibole and plagioclase have maximum water contents of 5.1 wt.%, implying a minimum pressure of ∼ 155 MPa for water-saturated conditions. The magma chamber depth is estimated to be about 5–6 km or more, a result consistent with geophysical data. The thicknesses of opx–mt–amph reaction rims on olivine xenocrysts are used to estimate the residence time of olivine crystals in the shallow chamber in the range 2 months to 4 years, suggesting replenishment of deeper magma into the shallow chamber contemporaneous with eruption. The absence of decompression-driven breakdown rims around amphiboles indicates ascent times of less than 7 days. Volcanological observations of the start of the 2001–2004 episode suggest approximately 16 days for the ascent time and a conduit equivalent to a cylinder of diameter approximately 53–71 m. Application of a conduit flow model indicates that the magma chamber was replenished during the 2001–2004 eruption, consistent with the results of olivine reaction rims, and that the chamber has an estimated volume of order 7 km3.