Bibliography
Volcano:
Group by:  
Jump to:     All     "     0     1     2     3     4     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W     А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Э     Ю     Я     
Records: 2383
 V
Volcanic Ash Hazard along the North Pacific (NOPAC) Air Routs: Kurile Islands - Kamchatka - Alaska (1995)
Miller T.P., Kirianov V.Yu. Volcanic Ash Hazard along the North Pacific (NOPAC) Air Routs: Kurile Islands - Kamchatka - Alaska // Proc. of the 95 International workshop on Volcanoes Commemorating the 50-th Anniversary of the Mt. Shova-Shinzan: Short papers and Abstracts. 1995.
Volcanic Ash in Kamchatka as a Source of Potential Hazard to Air Traffic (1992)
Kirianov V.Yu. Volcanic Ash in Kamchatka as a Source of Potential Hazard to Air Traffic // Volcanic Ash and Aviation Safety: Proc. First Intern. Symp. on Volcanic Ash and Aviation safety. US Geological Survey Bull. US Geological Survey. 1992. Vol. 2047. P. 57-63.
Volcanic Explosions at Karymsky: A Broadband Experiment Around the cone (1997)
Lees J.M., Johnson J., Gordeev E.I., Batereau K., Ozerov A.Yu. Volcanic Explosions at Karymsky: A Broadband Experiment Around the cone // AGU Spring Meeting 1997 Abstracts. Baltimore, Maryland: AGU. 1997. P. S11C-06.
Volcanic activity at Sedankinsky Dol lava field, Sredinny Ridge, during the Holocene (Kamchatka, Russia) (2004)
Dirksen O.V., Bazanova L.I., Pletchov P.Yu., Portnyagin M.V., Bychkov K.A. Volcanic activity at Sedankinsky Dol lava field, Sredinny Ridge, during the Holocene (Kamchatka, Russia) // Abstracts. 4rd Biennial Workshop on Subduction Processes emphasizing the Kurile-Kamchatka-Aleutian Arcs (JKASP-4). Linkages among tectonics, seismicity, magma genesis, and eruption in volcanic arcs. August 21-27, 2004. Petropavlovsk-Kamchatsky: Institute of Volcanology and Seismology FEB RAS. 2004. P. 55
Volcanic edifice stability during cryptodome intrusion (2001)
Donnadieu Franck, Merle Olivier, Besson Jean-Claude Volcanic edifice stability during cryptodome intrusion // Bulletin of Volcanology. 2001. Т. 63. № 1. С. 61-72. doi:10.1007/s004450000122.    Annotation
Limit equilibrium analyses were applied to the 1980 Mount St. Helens and 1956 Bezymianny failures in order to examine the influence on stability of structural deformation produced by cryptodome emplacement. Weakening structures associated with the cryptodome include outward-dipping normal faults bounding a summit graben and a flat shear zone at the base of the bulged flank generated by lateral push of the magma. Together with the head of the magmatic body itself, these structures serve directly to localize failure along a critical surface with low stability deep within the interior of the edifice. This critical surface, with the safety coefficient reduced by 25–30%, is then very sensitive to stability condition variation, in particular to the pore-pressure ratio (ru) and seismicity coefficient (n). For ru=0.3, or n=0.2, the deep surface suffers catastrophic failure, removing a large volume of the edifice flank. In the case of Mount St. Helens, failure occurred within a material with angle of friction ~40°, cohesion in the range 105–106 Pa, and probably significant water pore pressure. On 18 May 1980, detachment of slide block I occurred along a newly formed rupture surface passing through the crest of the bulge. Although sliding of block I may have been helped by the basal shear zone, significant pore pressure and a triggering earthquake were required (ru=0.3 and n=0.2). Detachment of the second block was guided by the summit normal fault, the front of the cryptodome, and the basal shear zone. This occurred along a deep critical surface, which was on the verge of failure even before the 18 May 1980 earthquake. The stability of equivalent surfaces at Bezymianny Volcano appears significantly higher. Thus, although magma had already reached the surface, weaker materials, or higher pore pressure and/or seismic conditions were probably required to reach the rupture threshold. From our analysis, we find that deep-seated sector collapses formed by removing the edifice summit cannot generally result from a single slide. Cryptodome-induced deformation does, however, provide a deep potential slip surface. As previously thought, it may assist deep-seated sector collapse because it favors multiple retrogressive slides. This leads to explosive depressurization of the magmatic and hydrothermal systems, which undermines the edifice summit and produces secondary collapses and explosive blasts.
Volcanic eruptions and seismic activity at Klyuchevskoi, Bezymiannyi and Shiveluch in 1986-1987 (1991)
Zharinov N.A., Gorelchik V.I., Belousov A.B., Belousova M.G., Garbuzova V.T., Demyanchuk Yu.V., Zhdanova E.Yu. Volcanic eruptions and seismic activity at Klyuchevskoi, Bezymiannyi and Shiveluch in 1986-1987 // Volcanology and Seismology. 1991. Vol. 12. Vol. 3. P. 327-345.
Volcanic hazards from Bezymianny - and Bandai-type eruptions (1987)
Siebert Lee, Glicken Harry, Ui Tadahide Volcanic hazards from Bezymianny - and Bandai-type eruptions // Bulletin of Volcanology. 1987. P. 435-459.
Volcanic structure and composition of Old Shiveluch volcano, Kamchatka (2013)
Gorbach Natalia, Portnyagin Maxim, Tembrel Igor Volcanic structure and composition of Old Shiveluch volcano, Kamchatka // Journal of Volcanology and Geothermal Research. 2013. Vol. 263. P. 193-208. doi:10.1016/j.jvolgeores.2012.12.012.
Volcanic tsunami: a review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea) (2014)
Paris Raphaël, Switzer Adam D., Belousova Marina, Belousov Alexander, Ontowirjo Budianto, Whelley Patrick L., Ulvrova Martina Volcanic tsunami: a review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea) // Natural Hazards. 2014. Vol. 70. № 1. P. 447-470. doi:10.1007/s11069-013-0822-8.
Volcanic zone of the Kurile Islands (1961)
Gorshkov G.S. Volcanic zone of the Kurile Islands // Proc. 9th Pacific Sci. Congr. 1961. Vol. 12.



Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2021. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Development&Design: roman@kscnet.ru