Bibliography
Volcano:
Group by:  
Jump to:     All     "     0     1     2     3     4     5     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W          А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Ю     Я     
Records: 2716
 A
Activity of the Volcanoes of Kamchatka and the Kuril Islands (1989)
Fedotov S.A., Ivanov B.V., Dvigalo V.N., Kirsanov I.T., Muravyev Y.D., Ovsyannikov A.A., Razina A.A., Seliverstov N.I., Stepanov V.V., Khrenov A.P., Chirkov A.M. Activity of the Volcanoes of Kamchatka and the Kuril Islands // Volcanology and Seismology. 1989. Vol. 7. № 5. P. 647-682.
Advances in studies of dense volcanic granular flows (2005)
Bursik M., Patra A., Pitman E. B ., Nichita C., Macias J. L., Saucedo R., Girina O.A. Advances in studies of dense volcanic granular flows // Reports on Progress in Physics. 2005. Vol. 68. P. 271-301.
Age and Paleogeography of Formation of Volcano-Sedimentary Deposits in the Uzon-Geizernaya Caldera Depression, Kamchatka (According to Palynological Data) (1993)
Egorova I.A. Age and Paleogeography of Formation of Volcano-Sedimentary Deposits in the Uzon-Geizernaya Caldera Depression, Kamchatka (According to Palynological Data) // Volcanology and Seismology. 1993. Vol. 15. № 2. P. 157-176.
   Annotation
Based on thepalynological studies, the age dismembering is made of volcanogenic-sedimentary deposits in the Uzon-Geysernaya Caldera Depression. The paleogeographical setting of the time of sedimentation is described. The age of deposits was established to be Late Pleitocene-Holocene. The dating was made of the main events of the post-caldera volcanic activity in the Uzon Caldera.
Age of Volcanoes in the Kurille-Kamchatka Zone (1969)
Melekestsev I.V., Braitseva O.A., Sulerzhitskii L.D., Ogorodov N.V., Kozhemiaka N.N., Egorova I.A., Lupikina E.G. Age of Volcanoes in the Kurille-Kamchatka Zone // International Association of Volcanology and Chemistry of the Earth`s Interior. Sumposium on Volcanoes &Their Roots. Oxford: 1969. P. 138-139.
Ages and stages of development of the Kurile - Kamchatka active volcanoes (1983)
Melekestsev I.V. Ages and stages of development of the Kurile - Kamchatka active volcanoes // Arc Volcanism: Physics and Tectonics. Proceedings of a 1981 IAVCEI Symposium, Arc Volcanism, August-September, 1981, Tokyo and Hakone. Tokyo: Terra Scientific Publishing Co. 1983. P. 230-231.
Ages of active volcanoes in the Kuril-Kamchatka region (1995)
Braitseva O.A., Melekestsev I.V., Ponomareva V.V., Sulerzhitskiy L.D., Litasova S.N. Ages of active volcanoes in the Kuril-Kamchatka region // Volcanology and Seismology. 1995. Vol. 16. № 4-5. P. 341-369.
   Annotation
По результатам геолого-геоморфологических, тефрохронологических и изотопно-геохронологических исследований на базе более 600 14С-дат определено время возникновения (возраст) большинства действующих вулканов, кальдер и кратеров субкальдерных извержений Курило-Камчатского региона. Установлено, что действующие вулканы являются достаточно молодыми образованиями с максимальным возрастом 40-50 тыс. лет. Подавляющее большинство наиболее активных в настоящее время вулканов начало формироваться в самом конце позднего плейстоцена и в голоцене. Для большинства вулканов, возникших в голоцене, определен их 14С-возраст. Установлено, что все полигенные стратовулканы Камчатки в голоцене возникали только в пределах ее Восточной вулканической зоны. Определен 14С-возраст большинства позднеплейстоценовых кальдер, которые сформировались Преимущественно к интервале времени 30-40 тыс. лет назад. Датированы все голоценовые кальдеры и ряд кратеров субкальдерных извержений. Выявлены периоды синхронной активизации действующих вулканов в голоцене в интервале времени 7500-7800 и 1300-1800 лет назад.
Along-arc variations in lithospheric mantle compositions in Kamchatka, Russia: First trace element data on mantle xenoliths from the Klyuchevskoy Group volcanoes (2013)
Ionov D.A., Bénard A., Plechov P.Yu., Shcherbakov V.D. Along-arc variations in lithospheric mantle compositions in Kamchatka, Russia: First trace element data on mantle xenoliths from the Klyuchevskoy Group volcanoes // Journal of Volcanology and Geothermal Research. 2013. Vol. 263. P. 122 - 131. doi: 10.1016/j.jvolgeores.2012.12.022.
   Annotation
Abstract We provide results of a detailed study of the first peridotite xenoliths of proven mantle origin reported from Bezymyanny volcano in the Klyuchevskoy Group, northern Kamchatka arc. The xenoliths are coarse spinel harzburgites made up mainly of Mg-rich olivine as well as subhedral orthopyroxene (opx) and Cr-rich spinel, and also contain fine-grained interstitial pyroxenes, amphibole and feldspar. The samples are unique in preserving the evidence for both initial arc mantle substrate produced by high-degree melt extraction and subsequent enrichment events. We show that the textures, modal and major oxide compositions of the Bezymyanny xenoliths are generally similar to those of spinel harzburgite xenoliths from Avacha volcano in southern Kamchatka. However, coarse opx from the Bezymyanny harzburgites has higher abundances of light and medium rare earth elements and other highly incompatible elements than coarse opx from the Avacha harzburgites. We infer that (1) the sub-arc lithospheric mantle beneath both Avacha and Bezymyanny (and possibly between these volcanoes) consists predominantly of harzburgitic melting residues, which experienced metasomatism by slab-related fluids or low-fraction, fluid-rich melts and (2) the degrees of metasomatism are higher beneath Bezymyanny. By contrast, xenolith suites from Shiveluch and Kharchinsky volcanoes 50–100 km north of the Klyuchevskoy Group include abundant cumulates and products of reaction of mantle rocks with silicate melts at high melt/rock ratios. The high melt flux through the lithospheric mantle beneath Shiveluch and Kharchinsky may be related to the asthenospheric flow around the northern edge of the sinking Pacific plate; lateral propagation of fluids in the mantle wedge south of the plate edge may contribute to metasomatism in the mantle lithosphere beneath the Klyuchevskoy Group volcanoes.
Amphibole record of 1964 plinian and following dome-forming eruptions of Shiveluch volcano, Kamchatka (2020)
Gorbach N.V., Philosofova T.M, Portnyagin M.V. Amphibole record of 1964 plinian and following dome-forming eruptions of Shiveluch volcano, Kamchatka // Journal of Volcanology and Geothermal Research. 2020. Vol. 407. № 107108. doi: 10.1016/j.jvolgeores.2020.107108.
   Annotation
Shiveluch is one of the most active explosive volcanoes worldwide. During the last рlinian eruption in 1964 and the following (1980-current time) dome-forming eruptions Shiveluch has produced andesites and dacites (SiO2~60-64 wt.%) containing variably zoned, compositionally and texturally diverse amphibole phenocrysts. In this work, we attempt to decode the complex zoning of the amphibole crystals in the 55-year series of pumice, dome rocks and mafic enclaves in order to reconstruct the most recent evolution of the volcano plumbing system.
The amphibole zoning in Shiveluch andesites reveals correlation with the style and date of eruption. High-Al cores mantled by low-Al rims in amphiboles from the 1964 plinian eruption record a drastic decrease of pressure and rapid magma ascent from the lower crust to the shallow magma chamber. Typically unzoned and often opacitized low-Al crystals from the early dome-building episodes in 1980-1981 and 1993-1995 reflect magma crystallization in the shallow magma chamber. Complexly zoned amphiboles from andesites erupted in 2000s indicate replenishment of the shallow magma chamber with mafic magma and syn-eruptive mixing processes. Amphibole-based barometric calculations obtained by different approaches indicate that the Shiveluch plumbing system is complex and comprises two, mafic and silicic magma storage zones at ~15-20 km and ~5-6 km depths. We suggest that both episodes of the plinian eruption in 1964 and the extensive dome growth in 2001-2016 were driven by influx of mafic magma in the shallow storage zone beneath Shiveluch. The mafic replenishment likely preceded the 1964 plinian eruption and repeatedly occurred during the period of extensive dome growth in 2001-2016. The variable styles of the recent Shiveluch eruptions may be controlled by the relative volume of the mafic recharges and their thermal and viscosity effects on the efficiency of magma mixing.
An eruption of the Veer cone as a volcanic event during the increase of volcanic activity in Kamchatka at the beginning of the Christian Era (2010)
Dirksen O.V., Bazanova L.I. An eruption of the Veer cone as a volcanic event during the increase of volcanic activity in Kamchatka at the beginning of the Christian Era // Journal of Volcanology and Seismology. 2010. Vol. 4. № 6. P. 378-384. doi: 10.1134/S0742046310060023.
   Annotation
Тефрохронологические исследования, проведенные в долине р. Левая Авача, позволили установить истинный возраст шлакового конуса Веер, который образовался примерно в 470 г. н.э. (1600 14 л.н.). Эти данные опровергают существовавшие до настоящего времени представления о дате его формирования в 1856 г. Моногенный конус Веер необходимо исключить из каталогов исторических извержений и действующих вулканов Камчатки. Извержение конуса явилось проявлением общекамчатской активизации эндогенных процессов, происходившей в 0-650 гг. н.э.
Andesite crystallization in the upper parts of volcanic canals (1969)
Bogoyavlenskaya G.E., Dubik Y.M. Andesite crystallization in the upper parts of volcanic canals // Bulletin Volcanologique. 1969. Vol. 33. Vol. 4. P. 1269-1273. 20 p. doi: 10.1007/BF02597721.
   Annotation
Constant observations of the eruption process of Bezymianny volcano and an incessant control of the properties and volume of ejected products enabled us to reconstruct cristallization conditions of the magma in the top parts of the volcanic vent assumedly to a depth of 6–8 km.
Substantial changes in the mineralogy and petrography of lavas have been recorded during the thirteen years of the activity of the volcano.
Hornblende andesites of the first portions of eruptions were replaced by bipyroxene andesites, in which the second generation of phenocrysts had appeared — subphenocrysts. The content of subphenocrysts was progressively increasing with a simultaneous drop in the amount of glass to nearly one half of the former amount.
In the process of eruption the chemical composition of rocks did not change: a high viscosity of the melt prevented a differentiation in the upper parts of the magmatic column.
A relative permanence of the composition and amount of phenocrysts of plagioclase and pyroxene throughout all the eruption stages indicates that already at a depth of 7–8 km the melt contains intratelluric phenocrysts.
The appearance in lavas of the last eruption stage of phenocrysts belonging to the 2nd generation despite an unchanged chemical composition, indicates their cristallization in subsurface conditions in the interval of 5–10 years.