Bibliography
Volcano:
Group by:  
Jump to:     All     "     0     1     2     3     4     5     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W          А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Ю     Я     
Records: 2734
 A
Andesite crystallization in the upper parts of volcanic canals (1969)
Bogoyavlenskaya G.E., Dubik Y.M. Andesite crystallization in the upper parts of volcanic canals // Bulletin Volcanologique. 1969. Vol. 33. Vol. 4. P. 1269-1273. 20 p. doi: 10.1007/BF02597721.
   Annotation
Constant observations of the eruption process of Bezymianny volcano and an incessant control of the properties and volume of ejected products enabled us to reconstruct cristallization conditions of the magma in the top parts of the volcanic vent assumedly to a depth of 6–8 km.
Substantial changes in the mineralogy and petrography of lavas have been recorded during the thirteen years of the activity of the volcano.
Hornblende andesites of the first portions of eruptions were replaced by bipyroxene andesites, in which the second generation of phenocrysts had appeared — subphenocrysts. The content of subphenocrysts was progressively increasing with a simultaneous drop in the amount of glass to nearly one half of the former amount.
In the process of eruption the chemical composition of rocks did not change: a high viscosity of the melt prevented a differentiation in the upper parts of the magmatic column.
A relative permanence of the composition and amount of phenocrysts of plagioclase and pyroxene throughout all the eruption stages indicates that already at a depth of 7–8 km the melt contains intratelluric phenocrysts.
The appearance in lavas of the last eruption stage of phenocrysts belonging to the 2nd generation despite an unchanged chemical composition, indicates their cristallization in subsurface conditions in the interval of 5–10 years.
Another “Great Tolbachik” Eruption? (2013)
Edwards Ben, Belousov Alexander, Belousova Marina, Volynets Anna, Melnikov Dmitry, Chirkov Sergey, Senyukov Sergey, Gordeev Evgenii, Muraviev Yaroslav, Izbekov Pavel, Demianchuk Yury Another “Great Tolbachik” Eruption? // Eos, Transactions American Geophysical Union. 2013. Vol. 94. № 21. P. 189-191. doi:10.1002/2013EO210002.
   Annotation
On 27 November 2012 at 1715 local time, a focused swarm of earthquakes was interpreted as the start of a new ongoing eruption on the south flank (Tolbachinsky Dol) of Plosky Tolbachik volcano in east central Kamchatka, Russia (Figure 1a) [Samoylenko et al., 2012]. Visual observations on 29 November showed ash shooting from two fractures as well as long, rapidly moving lava flows. Although the initial ash clouds reached 6 kilometers in height, subsequent ashfall has been limited to the area around the main vents, and no permanent settlements are in danger from advancing lava flows (the closest settlements are about 40 kilometers from the volcano). Including this eruption, six different volcanoes are presently active in Kamchatka.
Areal variability of tephra composition as indicated by bulk silicate analysis data (1990)
Felitsyn S.B., Kirianov V.Yu. Areal variability of tephra composition as indicated by bulk silicate analysis data // Volcanology and Seismology. 1990. Vol. 9. № 1. P. 1-20.
Assessment of Kamchatkan Ash Hazard to Airlines (1993)
Kirianov V.Yu. Assessment of Kamchatkan Ash Hazard to Airlines // Volcanology and Seismology. 1993. Vol. 14. № 3. P. 246-269.
Asymmetric caldera-related structures in the area of the Avacha group of volcanoes in Kamchatka as revealed by ambient noise tomography and deep seismic sounding (2014)
Koulakov Ivan, Jaxybulatov Kayrly, Shapiro Nikolay M., Abkadyrov Ilyas, Deev Evgeny, Jakovlev Andrey, Kuznetsov Pavel, Gordeev Evgeny, Chebrov Viktor Asymmetric caldera-related structures in the area of the Avacha group of volcanoes in Kamchatka as revealed by ambient noise tomography and deep seismic sounding // Journal of Volcanology and Geothermal Research. 2014. Vol. 285. P. 36 - 46. doi: 10.1016/j.jvolgeores.2014.08.012.
   Annotation
Avacha group includes two active and potentially dangerous volcanoes, Avachinsky and Koryaksky, located close to Petropavlovsk-Kamchatsky, the main city of Kamchatka. We present the results of two independent seismic studies of shallow crustal structures beneath the Avacha group based on passive and active source observations. The first study is based on the analysis of continuous recording by 11 seismic stations installed over the Avacha group in 2012 and 7 permanent stations in the same region. We present a series of 2D Rayleigh-wave group velocity maps based on correlation of ambient noise, that were then converted into 3D distribution of shear wave velocity. The second work was based on the reprocessing of an active source deep seismic sounding profile across the Avachinsky volcano that was shot in 1982–1984. We made the analysis of travel times of refracted waves using a 2D tomography inversion. The resulting seismic models appear to be consistent with each other and show clear low-velocity zone to the SW of the Avachinsky volcano and high velocity structures to NE. These observations also agree with the existing gravity and magnetotelluric measurements. Based on the obtained seismic models we identify two large buried calderas and large lava flows that are thought to be related to a series of large eruption episodes of Avachinsky occurred within the last 30,000 years.
Atmochemical halos of mercury (Hg) within the area of active volcanic edifices in Kamchatka (2008)
Ozerova N., Ozerov A. Atmochemical halos of mercury (Hg) within the area of active volcanic edifices in Kamchatka // IAVCEI 2008 - General Assembly, Reykjavik, Iceland. Abstracts. 2008. P. 7
 B
Belomarinaite KNa (SO 4): A new sulfate from 2012–2013 Tolbachik Fissure eruption, Kamchatka Peninsula, Russia (2019)
Filatov S., Shablinskii A., Vergasova L., Saprikina O., Bubnova R., Moskaleva S., Belousov Alexander Belomarinaite KNa (SO 4): A new sulfate from 2012–2013 Tolbachik Fissure eruption, Kamchatka Peninsula, Russia // Mineralogical Magazine. 2019. Vol. 83. № 4. P. 569-577. doi: 10.1180/mgm.2018.170.
Bezymianny (Kamchatka). 1984-1985 eruptions and related pyroclastic deposits (1986)
Bogoyavlenskaya G.E., Kirsanov I.T., Firstov P.P., Girina O.A. Bezymianny (Kamchatka). 1984-1985 eruptions and related pyroclastic deposits // SEAN Bulletin. 1986. № 4. P. 15-20.
Bezymianny (Kamchatka)/ Lava extrusion, pyroclastic flow (1986)
Firstov P.P., Maksimov A.P., Girina O.A. Bezymianny (Kamchatka)/ Lava extrusion, pyroclastic flow // SEAN Bulletin. 1986. № 7. P. 12
Bezymianny eruption of August 02, 1989 (1993)
Girina O.A., Bogoyavlenskaya G.E., Demyanchuk Yu.V. Bezymianny eruption of August 02, 1989 // Volcanology and Seismology. 1993. Vol. 15. № 2. P. 135-144.