Bibliography
Volcano:
Group by:  
Jump to:
Records: 2495
 2010
Ozerov A.Yu. The mechanism of basaltic explosions: Experimental modeling // Journal of Volcanology and Seismology. 2010. Vol. 4. № 5. P. 295-309. doi: 10.1134/S0742046310050015.    Annotation
An instrument package for simulating basaltic eruptions (IPSBE) with a height of 18 m has been developed for investigating the processes that occur during Strombolian eruptions. The device follows the geometrical ratio between the actual plumbing system of a volcano, with the ratio of conduit diameter to conduit height being 1 to 1000. For the first time in physical modeling studies, we created conditions in which a moving gassaturated model liquid enters the conduit; this enabled us to study bubble nucleation, expansion, and coalescence, the generation and transformation of gas structures, and the kinetic features shown by the evolution of the gas phase. These experiments revealed a novel (previously unknown) flow pattern of two phase mixtures in a vertical column, viz., a cluster flow that involves the regular alternation of compact clusters of gas bubbles that are separated by a fluid that does not involve a free gas phase. It is shown that the liquid, bubble, cluster, and slug flow patterns are mutually transformed under certain conditions; they are polymorphous modifications of a gassaturated liquid moving in a vertical pipe. The data thus acquired suggested a new model for the gas–liquid movement of a magma melt in a conduit: depending on the type of gas–liquid flow behavior at the vent, the crater will exhibit different types of explosive activity, including actual explosions.
Shishkina T.A., Botcharnikov R.E., Holtz F., Almeev R.R., Portnyagin M.V. Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa // Chemical Geology. 2010. Vol. 277. № 1–2. P. 115 - 125. doi: 10.1016/j.chemgeo.2010.07.014.    Annotation
The solubility of H2O- and CO2-bearing fluids in tholeiitic basalts has been investigated experimentally at temperature of 1250 °C and pressures of 50, 100, 200, 300, 400 and 500 MPa. The concentrations of dissolved H2O and CO2 have been determined using FTIR spectroscopy with an accurate calibration of the absorption coefficients for hydrogen- and carbon-bearing species using synthesized standards of the same tholeiitic composition. The absorption coefficients are 0.65 ± 0.08 and 0.69 ± 0.08 L/(mol cm) for molecular H2O and OH groups by Near-Infrared (NIR), respectively, and 68 ± 10 L/(mol cm) for bulk H2O by Mid-Infrared (MIR). The carbonate groups determined by MIR have an absorption coefficient of 317 ± 23 L/(mol cm) for the band at 1430 cm−1.The solubility of H2O in the melt in equilibrium with pure H2O fluid increases from about 2.3 ± 0.12 wt.% at 50 MPa to about 8.8 ± 0.16 wt.% at 500 MPa, whereas the concentration of CO2 increases from about 175 ± 15 to 3318 ± 276 ppm in the melts which were equilibrated with the most CO2-rich fluids (with mole fraction of CO2 in the fluid, XflCO2, from 0.70 to 0.95). In melts coexisting with H2O- and CO2-bearing fluids, the concentrations of dissolved H2O and CO2 in basaltic melt show a non-linear dependence on both total pressure and mole fraction of volatiles in the equilibrium fluid, which is in agreement with previous studies. A comparison of new experimental data with existing numerical solubility models for mixed H2O–CO2 fluids shows that the models do not adequately predict the solubility of volatiles in basaltic liquids at pressures above 200 MPa, in particular for CO2, implying that the models need to be recalibrated.

The experimental dataset presented in this study enables a quantitative interpretation of volatile concentrations in glass inclusions to evaluate the magma storage conditions and degassing paths of natural island arc basaltic systems. The experimental database covers the entire range of volatile compositions reported in the literature for natural melt inclusions in olivine from low- to mid-K basalts indicating that most melt inclusions were trapped or equilibrated at intermediate to shallow levels in magmatic systems (< 12–15 km).
Siebert L., Simkin T., Kimberly P. Volcanoes of the World. Berkeley: University of California Press. 2010. 568 p.    Annotation
This impressive scientific resource presents up-to-date information on ten thousand years of volcanic activity on Earth. In the decade and a half since the previous edition was published new studies have refined assessments of the ages of many volcanoes, and several thousand new eruptions have been documented. This edition updates the book's key components: a directory of volcanoes active during the Holocene; a chronology of eruptions over the past ten thousand years; a gazetteer of volcano names, synonyms, and subsidiary features; an extensive list of references; and an introduction placing these data in context. This edition also includes new photographs, data on the most common rock types forming each volcano, information on population densities near volcanoes, and other features, making it the most comprehensive source available on Earth's dynamic volcanism.
Torsvik T., Paris R., Didenkulova I., Pelinovsky E., Belousov A., Belousova M. Numerical simulation of a tsunami event during the 1996 volcanic eruption in Karymskoye lake, Kamchatka, Russia // Natural Hazards and Earth System Science. 2010. Vol. 10. № 11. P. 2359-2369. doi:10.5194/nhess-10-2359-2010.
Авдейко Г.П., Палуева А.А., Хлебородова О.А. Внутриплитные базальты и адакиты Восточной Камчатки: условия образования // Вестник КРАУНЦ. Серия: Науки о Земле. 2010. Вып. 16. № 2. С. 55-65.    Annotation
На основе анализа опубликованных данных по вещественному составу, геолого-структурным позициям, пространственному положению и возрасту щелочных и субщелочных базальтов восточно-камчатского вулканического пояса с внутриплитными геохимическими характеристиками предложена геодинамическая модель их образования. По этой модели щелочные базальты образовались в результате низкой степени парциального плавления мантийного плюма типа «andersonian». Этот мантийный плюм был сформирован в астеносфере под тихоокеанской плитой на расстоянии 400-500 км к востоку от курило-камчатского глубоководного желоба в результате флексурообразования, по аналогии с моделью (Hirano et al., 2006), а затем конвективным течением перемещен к вновь формирующейся зоне субдукции. Адакиты образовались путем плавления фронтальной части тихоокеанской плиты в начальный период субдукции на контакте с мантийным плюмом. Модель объясняет и короткий интервал времени формирования щелочных пород, и последовательную смену их субщелочными породами, адакитами, а затем типичными субдукционными известково-щелочными породами, и пространственное нахождение рассмотренных комплексов только в зоне перескока субдукции.

Geodynamic model of alkaline basaltoids with intraplate geochemical characteristics was developed on the base of systematization and analysis their space and time data in the East Kamchatka volcanic arc. The alkaline «intraplate» rocks in the East Kamchatka were formed as a result of partial melting at low degree of an «andersonian» type mantle plume. This mantle plume was generated in the astenosphere beneath the Pacific plate about 400-500 km from the deep sea trench similarly Hirano et al. (2006) flexure model and then was moved to the new forming East Kamchatka subduction zone by mantle convection. Adakites were produced by partial melting of the frontal part of the subducting Pacific plate in the initial stage of subduction. The model explains a short time of the formation of alkaline rocks, and their change by transitional rocks and adakites, and then by typical calk-alkaline rocks, and their position only in the subduction zone jump to the present-day position.
Андреев В.И., Пузанков М.Ю. Вулкан Большая Ипелька - геологические и геохимические особенности // Материалы конференции, посвященной Дню вулканолога. Петропавловск-Камчатский, 30-31 марта 2009 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2010. С. 85-91. 210 с.    Annotation
Содержание и соотношение радиоактивных элементов (РАЭ) в вулканогенных породах является индикаторным и используется в различных исследованиях, построениях и реконструкциях. В работе рассмотрена взаимосвязь содержания радиоактивных элементов в вулканитах с геологическим строением вулкана Большая Ипелька, динамикой его извержений, особенностями становления изверженных пород и некоторых постмагматических процессов. Приведено возможное объяснение необычного для четвертичных вулканитов Камчатки содержания и соотношения (РАЭ).

Bolshaya Ipelka is a shield-shaped volcano, the largest among the units of this type in Kamchatka. The most typical mega-plagiophyre volcanites show that Th/U ratio for the rocks is equal to 3.6, though the standard value for Kamchatka Quarternary volcanites comprises about 1.5. The reason of the untypical content and, respectively, the ratio of these components might be oxidation and further migration of uranium. Conditions for this likely occurred in shallow circulating peripheral magma chambers not only at Ipelka, but to less extend at some other volcanoes with mega-plagiophyre variations of magmas.
Викулин А.В., Акманова Д.Р., Осипова Н.А. Вулканизм как индикатор геодинамических процессов // Литосфера. 2010. № 3. С. 5-11.    Annotation
С целью выявления и изучения особенностей геодинамических процессов, авторами была составлена база, включающая в едином формате все известные данные о землетрясениях и извержениях вулканов планеты за последние 4.5 тыс. и 12 тыс. лет соответственно. С использованием этих данных показано, что энергетические (графики повторяемости) и пространственно-временные (скорости миграции) свойства распределения чисел землетрясений и извержений вулканов являются близкими, что позволяет вулканизм (как сейсмичность и тектонику) рассматривать как индикатор планетарного геодинамического процесса.
Гирина О.А. Конвективная гравитационная дифференциация пирокластики андезитовых вулканов // Литосфера. 2010. № 3. С. 135-144.    Annotation
Рассмотрены основные типы пирокластических пород, формирующихся при эксплозивных извержениях андезитовых вулканов. Показано, что их генезис обусловлен конвективной гравитационной дифференциацией пирокластической массы, движущейся по склону вулкана в процессе извержения.

The main types of pyroclastic rocks formed during explosive eruptions of andesitic volcanoes are presented in this work. It is shown that their genesis is due to convective gravitational differentiation of pyroclastic masses moving along slope of volcano during explosive eruption.
Гирина О.А., Маневич А.Г., Мельников Д.В., Нуждаев А.А., Ушаков С.В., Коновалова О.А. Активность вулкана Корякский с октября 2008 г. по октябрь 2009 г. по данным KVERT // Материалы конференции, посвященной Дню вулканолога «Современный вулканизм и связанные с ним процессы», Петропавловск-Камчатский, 29-30 марта 2010 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2010. С. 15-23.    Annotation
Seismic activity at Koryaksky volcano has started to increase since March 2008. A fumarole on the western flank of the volcano was observed in late October. On 22 December the satellite images revealed first ash plumes drifted NE for 200 km. The increased activity of the volcano was registered in March-April and August 2009. For these periods volcano has produced numerous gas plumes with various amount of ash drifted primarily E and W for 600 km.
Гришин С.Ю., Гирина О.А., Верещага Е.М., Витер И.В. Мощное извержение вулкана Пик Сарычева (Курильские острова, 2009 г.) и его воздействие на растительный покров // Вестник ДВО РАН. 2010. № 3. С. 40-50.    Annotation
Рассматривается очень сильное извержение влк. Пик Сарычева (о-в Матуа, центральные Курилы) в июне 2009 г. По дистанционным данным (фото из космоса) и наземным наблюдениям, проведенным летом 2009 г., описывается характер извержения и его катастрофическое воздействие на природу острова (на примере растительности).

Very powerful eruption of Sarychev Peak volcano (Matua Isl., the Central Kuriles) in June 2009 is examined in the paper. Nature of the eruption and its catastrophic impact on the island ecosystem (using vegetation as an example) are described based on remote sensing data (photos from the space) and ground observations, carried out in summer of 2009.



Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2022. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Development&Design: roman@kscnet.ru