Bibliography
Volcano:
Group by:  
Jump to:
Records: 2521
 2010
Gavrilenko M.G, Ozerov A.Yu. Petrochemical Characteristics of Gorely Volcano (Southern Kamchatka) Magmatic Series // “CoV6-Tenerife 2010” – Cities on Volcanoes 6, Puerto de la Cruz, Tenerife, Canary Islands, Spain May 31 - June 4, 2010. 2010.
Gavrilenko M.G, Ozerov A.Yu. The chemical composition of the accessory minerals inclusions in the olivine and pyroxene phenocrysts, as an indicator of the calc-alkaline magmas evolution conditions at the Gorely volcano (Kamchatka) // 2010 GSA Denver Annual Meeting (31 October – 3 November 2010). Geological Society of America Abstracts with Programs. Denver: GSA. 2010. Vol. 42. № 5. P. 626
Gilichinsky Michael, Melnikov Dmitry, Melekestsev Ivan, Zaretskaya Natasha, Inbar Moshe Morphometric measurements of cinder cones from digital elevation models of Tolbachik volcanic field, central Kamchatka // Canadian Journal of Remote Sensing. 2010. Vol. 36. Vol. 4. P. 287-300.
Girina O.A. Volcano monitoring and alert system in Kamchatka and Northern Kuriles // International Workshop on Progress of Research for Disaster Mitigation of Earthquakes and Volcanic Eruptions in the North Pacific Region. ISTC. Sapporo, Japan. May 10-13, 2010. Sapporo, Japan: Hokkaido University. 2010. P. 65-69.
Neill Owen K., Hammer Julia E., Izbekov Pavel E., Belousova Marina G., Belousov Alexander B., Clarke Amanda B., Voight Barry Influence of pre-eruptive degassing and crystallization on the juvenile products of laterally directed volcanic explosions // Journal of Volcanology and Geothermal Research. 2010. Vol. 198. № 1-2. P. 264-274. doi:10.1016/j.jvolgeores.2010.09.011.
Ozerov A.Yu. Cluster Regime – The New Regime Of Flowing Of Gas-Liquid Mixture In Vertical Columns (Based On Experimental Data) // The 6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion. Xi’an, China, 11-15 July 2009. Melville, N.Y.: American Institute of Physics. 2010. Vol. 1207. P. 348-354.
Ozerov A.Yu. Experimental modeling of the basaltic eruptions mechanism / International Conference Fluxes and Structures in Fluids: Physics of Geospheres – 2009, Selected Papers. 2010. P. 269-278.
Ozerov A.Yu. The mechanism of basaltic explosions: Experimental modeling // Journal of Volcanology and Seismology. 2010. Vol. 4. № 5. P. 295-309. doi: 10.1134/S0742046310050015.    Annotation
An instrument package for simulating basaltic eruptions (IPSBE) with a height of 18 m has been developed for investigating the processes that occur during Strombolian eruptions. The device follows the geometrical ratio between the actual plumbing system of a volcano, with the ratio of conduit diameter to conduit height being 1 to 1000. For the first time in physical modeling studies, we created conditions in which a moving gassaturated model liquid enters the conduit; this enabled us to study bubble nucleation, expansion, and coalescence, the generation and transformation of gas structures, and the kinetic features shown by the evolution of the gas phase. These experiments revealed a novel (previously unknown) flow pattern of two phase mixtures in a vertical column, viz., a cluster flow that involves the regular alternation of compact clusters of gas bubbles that are separated by a fluid that does not involve a free gas phase. It is shown that the liquid, bubble, cluster, and slug flow patterns are mutually transformed under certain conditions; they are polymorphous modifications of a gassaturated liquid moving in a vertical pipe. The data thus acquired suggested a new model for the gas–liquid movement of a magma melt in a conduit: depending on the type of gas–liquid flow behavior at the vent, the crater will exhibit different types of explosive activity, including actual explosions.
Shishkina T.A., Botcharnikov R.E., Holtz F., Almeev R.R., Portnyagin M.V. Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa // Chemical Geology. 2010. Vol. 277. № 1–2. P. 115 - 125. doi: 10.1016/j.chemgeo.2010.07.014.    Annotation
The solubility of H2O- and CO2-bearing fluids in tholeiitic basalts has been investigated experimentally at temperature of 1250 °C and pressures of 50, 100, 200, 300, 400 and 500 MPa. The concentrations of dissolved H2O and CO2 have been determined using FTIR spectroscopy with an accurate calibration of the absorption coefficients for hydrogen- and carbon-bearing species using synthesized standards of the same tholeiitic composition. The absorption coefficients are 0.65 ± 0.08 and 0.69 ± 0.08 L/(mol cm) for molecular H2O and OH groups by Near-Infrared (NIR), respectively, and 68 ± 10 L/(mol cm) for bulk H2O by Mid-Infrared (MIR). The carbonate groups determined by MIR have an absorption coefficient of 317 ± 23 L/(mol cm) for the band at 1430 cm−1.The solubility of H2O in the melt in equilibrium with pure H2O fluid increases from about 2.3 ± 0.12 wt.% at 50 MPa to about 8.8 ± 0.16 wt.% at 500 MPa, whereas the concentration of CO2 increases from about 175 ± 15 to 3318 ± 276 ppm in the melts which were equilibrated with the most CO2-rich fluids (with mole fraction of CO2 in the fluid, XflCO2, from 0.70 to 0.95). In melts coexisting with H2O- and CO2-bearing fluids, the concentrations of dissolved H2O and CO2 in basaltic melt show a non-linear dependence on both total pressure and mole fraction of volatiles in the equilibrium fluid, which is in agreement with previous studies. A comparison of new experimental data with existing numerical solubility models for mixed H2O–CO2 fluids shows that the models do not adequately predict the solubility of volatiles in basaltic liquids at pressures above 200 MPa, in particular for CO2, implying that the models need to be recalibrated.

The experimental dataset presented in this study enables a quantitative interpretation of volatile concentrations in glass inclusions to evaluate the magma storage conditions and degassing paths of natural island arc basaltic systems. The experimental database covers the entire range of volatile compositions reported in the literature for natural melt inclusions in olivine from low- to mid-K basalts indicating that most melt inclusions were trapped or equilibrated at intermediate to shallow levels in magmatic systems (< 12–15 km).
Siebert L., Simkin T., Kimberly P. Volcanoes of the World. Berkeley: University of California Press. 2010. 568 p.    Annotation
This impressive scientific resource presents up-to-date information on ten thousand years of volcanic activity on Earth. In the decade and a half since the previous edition was published new studies have refined assessments of the ages of many volcanoes, and several thousand new eruptions have been documented. This edition updates the book's key components: a directory of volcanoes active during the Holocene; a chronology of eruptions over the past ten thousand years; a gazetteer of volcano names, synonyms, and subsidiary features; an extensive list of references; and an introduction placing these data in context. This edition also includes new photographs, data on the most common rock types forming each volcano, information on population densities near volcanoes, and other features, making it the most comprehensive source available on Earth's dynamic volcanism.