Главная БиблиографияПо названиям
 
 Библиография
Вулкан: Расширенный поиск

Выбрать:   |   Все   |   "   |   0   |   1   |   2   |   3   |   4   |   7   |   A   |   B   |   C   |   D   |   E   |   F   |   G   |   H   |   I   |   K   |   L   |   M   |   N   |   O   |   P   |   Q   |   R   |   S   |   T   |   U   |   V   |   W   |   А   |   Б   |   В   |   Г   |   Д   |   Е   |   Ж   |   З   |   И   |   К   |   Л   |   М   |   Н   |   О   |   П   |   Р   |   С   |   Т   |   У   |   Ф   |   Х   |   Ц   |   Ч   |   Ш   |   Э   |   Ю   |   Я   |    Количество записей: 1949
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
 K
Kharchinsky and Zarechnyi volcanoes - unique centers of late Pleistocene magnesian basalts in Kamchatka: Structural setting, morphology, geologic structure and age (1999)
Volynets O.N., Melekestsev I.V., Ponomareva V.V., Yogodzinski G.M. Kharchinsky and Zarechnyi volcanoes - unique centers of late Pleistocene magnesian basalts in Kamchatka: Structural setting, morphology, geologic structure and age // Volcanology and Seismology. 1999. V. 20. № 4-5. P. 383-399.    Аннотация
This paper presents the results of studying the spatial distribution and structural setting of magnesian basalts and andesites in the Northern group of Kamchatkan volcanoes and in the junction zone of the Kuril-Kamchatka and Aleutian island arcs. The morphology and geologic structure of unique Kamchatkan magnesian basalt stratovolcanoes are described: Kharchinsky, Zarechnyi, and the Kharchinsky regional zone of cinder cones. The reported evidence includes the ages and eruptive histories, and productivities of the volcanoes and the volumes and weights of their edifices. The magnesian basalts were erupted 40-50 thousand years ago, for the first time during the Holocene.
http://repo.kscnet.ru/842/ [связанный ресурс]
Kizimen volcano, Kamchatka — A future Mount St. Helens? (1995)
Melekestsev Ivan V., Ponomareva Vera V., Volynets Oleg N. Kizimen volcano, Kamchatka — A future Mount St. Helens? // Journal of Volcanology and Geothermal Research. 1995. V. 65. № 3-4. P. 205-226.    Аннотация
We studied the tectonic setting, morphology, geologic structure, history of eruptive activity and evolution of the composition of the erupted material of Kizimen volcano, Kamchatka, from the moment of its origination 11–12 thousand years ago to the present time. Four cycles, each 2–3.5 thousand years long, were distinguished that characterize the activity of the volcano. All of the largest eruptions were dated, and their parameters determined. We also estimated the volume and the mass of the erupted products, the volcanic intensity of eruption of material during periods of high activity, and the amount of material the volcano ejected at different stages of its formation. It has been shown that the evolution of the composition of the rocks erupted (from dacite to basaltic andesite) takes place as a result of mixing of dacitic and basaltic magma. It is suggested that future eruptions that may take place at Kizimen may be similar to those at Bandai (1888) and Mount St. Helens (1980) volcanoes.


Kliuchevskoi volcano diary (2012)
Portnyagin Maxim, Ponomareva Vera Kliuchevskoi volcano diary // International Journal of Earth Sciences. 2012. V. 101. № 1. P. 195 doi:10.1007/s00531-011-0710-y.    Аннотация
Numerous ash layers deposited at the slopes of Kliuchevskoi volcano provide a detailed and continuous record of its explosive activity during the last ca. 10,000 years.
Kronotzk ignimbrites in Kamchatka (1963)
Piip B.I. Kronotzk ignimbrites in Kamchatka // Bulletin of Volcanology. 1963. V. 25. № 1. P. 31-32. doi: 10.1007/BF02596535.
Kurile Islands (1958)
Gorshkov G.S. Kurile Islands // Catalog of Active Volcanoes of the World and Solfatara Fields. 1958. P. 1-99.
Kurile Islands (2009)
Белоусов А.Б., Белоусова М.Г., Miller T. Kurile Islands // Encyclopedia of Islands. 2009. P. 520-524.
 L
Large debris avalanches and associated eruptions in the Holocene eruptive history of Shiveluch Volcano, Kamchatka, Russia (1998)
Ponomareva V.V., Pevzner M.M., Melekestsev I.V. Large debris avalanches and associated eruptions in the Holocene eruptive history of Shiveluch Volcano, Kamchatka, Russia // Bulletin of Volcanology. 1998. V. 59. № 7. P. 490-505. doi: 10.1007/s004450050206.    Аннотация
Shiveluch Volcano, located in the Central Kamchatka Depression, has experienced multiple flank failures during its lifetime, most recently in 1964. The overlapping deposits of at least 13 large Holocene debris avalanches cover an area of approximately 200 km2 of the southern sector of the volcano. Deposits of two debris avalanches associated with flank extrusive domes are, in addition, located on its western slope. The maximum travel distance of individual Holocene avalanches exceeds 20 km, and their volumes reach ∼3 km3. The deposits of most avalanches typically have a hummocky surface, are poorly sorted and graded, and contain angular heterogeneous rock fragments of various sizes surrounded by coarse to fine matrix. The deposits differ in color, indicating different sources on the edifice. Tephrochronological and radiocarbon dating of the avalanches shows that the first large Holocene avalanches were emplaced approximately 4530–4350 BC. From ∼2490 BC at least 13 avalanches occurred after intervals of 30–900 years. Six large avalanches were emplaced between 120 and 970 AD, with recurrence intervals of 30–340 years. All the debris avalanches were followed by eruptions that produced various types of pyroclastic deposits. Features of some surge deposits suggest that they might have originated as a result of directed blasts triggered by rockslides. Most avalanche deposits are composed of fresh andesitic rocks of extrusive domes, so the avalanches might have resulted from the high magma supply rate and the repetitive formation of the domes. No trace of the 1854 summit failure mentioned in historical records has been found beyond 8 km from the crater; perhaps witnesses exaggerated or misinterpreted the events.
Large holocene eruptions of Avacha Volcano, Kamchatka (7250-3700 14C years B.P.) (1998)
Braitseva O.A., Bazanova L.I., Melekestsev I.V., Sulerzhitskiy L.D. Large holocene eruptions of Avacha Volcano, Kamchatka (7250-3700 14C years B.P.) // Volcanology and Seismology. 1998. V. 20. № 1. P. 1-27.    Аннотация
The chronology, dynamics, and parameters of seven large eruptions of Avacha Volcano were reconstructed for its IAv andesitic period 7250-370014C years B.P., which began after a >2000-year period of relative quiescence. Their juvenile (andesitic pyroclastics) and resurgent products are described, and the geological and geomorphological consequences are evaluated. The largest eruption occurred 715014C years B.P. (8-10 km3 of erupted material). The subsequent events occurred 5700 (≥0.34 km3), 5600 (≥0.4 km3), 5500 (>1.34 km3), 5000 (≥0.5 km3), 4500 (>1.1 km3), and 4000 (≥0.6 km3) 14C years B.P. The erupted rocks were dominated by tephra; pyroclastic flows occurred only during the events of 5500 and 5000 years ago. It is believed that most of the eruptions produced acid peaks of varying intensity in the Greenland ice sheet.

Реконструированы хронология, динамика и параметры семи крупнейших извержений андезитового этапа 1Ав 7250-3700 14С-лет назад (л.н.) вулкана Авачинский на Камчатке, начавшегося после >2000-летнего периода относительного покоя. Описаны их ювенильные (андезитовая пирокластика) и резургентные продукты, оценен геолого-геоморфологический эффект. Самое мощное извержение (объем продуктов 8-10 км3) было 7250, последующие - 5700 (3*0,34 км3), 5600 (3*0,4 км3), 5500 (1,34 км3), 5000 (0,5 км3), 4500 (>1,1 км3), 4000 ( 0,6 км3) 14С-л.н. Среди изверженных продуктов преобладала тефра, пирокластические потоки имели место лишь при извержениях 5500 и 5000 л.н. Предполагается, что большинство извержений могло давать кислотные пики разной интенсивности в Гренландском ледниковом щите.
http://repo.kscnet.ru/921/ [связанный ресурс]
Large scale landslides on active volcanoes in the 20th century - Examples from the Kurile-Kamchatka region (Russia) (1996)
Belousov Alexander, Belousova Marina Large scale landslides on active volcanoes in the 20th century - Examples from the Kurile-Kamchatka region (Russia) // Landslides = Glissements de terrain : proceedings of the Seventh International Symposium on Landslides, 17 - 21 June 1996, Trondheim. Rotterdam: Balkema. 1996. V. 3. P. 953-957.
Large-scale failures on domes and stratocones situated on caldera ring faults: sand-box modeling of natural examples from Kamchatka, Russia (2005)
Belousov Alexander, Walter Thomas R., Troll Valentin R. Large-scale failures on domes and stratocones situated on caldera ring faults: sand-box modeling of natural examples from Kamchatka, Russia // Bulletin of Volcanology. 2005. V. 67. № 5. P. 457-468. doi:10.1007/s00445-004-0387-1.
Large-volume silicic volcanism in Kamchatka: Ar–Ar and U–Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions (2010)
Bindeman I.N., Leonov V.L., Izbekov P.E., Ponomareva V.V., Watts K.E., Shipley N.K., Perepelov A.B., Bazanova L.I., Jicha B.R., Singer B.S., Schmitt A.K., Portnyagin M.V., Chen C.H. Large-volume silicic volcanism in Kamchatka: Ar–Ar and U–Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions // Journal of Volcanology and Geothermal Research. 2010. V. 189. № 1-2. P. 57-80. doi:10.1016/j.jvolgeores.2009.10.009.    Аннотация
The Kamchatka Peninsula in far eastern Russia represents the most volcanically active arc in the world in terms of magma production and the number of explosive eruptions. We investigate large-scale silicic volcanism in the past several million years and present new geochronologic results from major ignimbrite sheets exposed in Kamchatka. These ignimbrites are found in the vicinity of morphologically-preserved rims of partially eroded source calderas with diameters from ∼ 2 to ∼ 30 km and with estimated volumes of eruptions ranging from 10 to several hundred cubic kilometers of magma. We also identify and date two of the largest ignimbrites: Golygin Ignimbrite in southern Kamchatka (0.45 Ma), and Karymshina River Ignimbrites (1.78 Ma) in south-central Kamchatka. We present whole-rock geochemical analyses that can be used to correlate ignimbrites laterally. These large-volume ignimbrites sample a significant proportion of remelted Kamchatkan crust as constrained by the oxygen isotopes. Oxygen isotope analyses of minerals and matrix span a 3‰ range with a significant proportion of moderately low-δ18O values. This suggests that the source for these ignimbrites involved a hydrothermally-altered shallow crust, while participation of the Cretaceous siliceous basement is also evidenced by moderately elevated δ18O and Sr isotopes and xenocryst contamination in two volcanoes. The majority of dates obtained for caldera-forming eruptions coincide with glacial stages in accordance with the sediment record in the NW Pacific, suggesting an increase in explosive volcanic activity since the onset of the last glaciation 2.6 Ma. Rapid changes in ice volume during glacial times and the resulting fluctuation of glacial loading/unloading could have caused volatile saturation in shallow magma chambers and, in combination with availability of low-δ18O glacial meltwaters, increased the proportion of explosive vs effusive eruptions. The presented results provide new constraints on Pliocene–Pleistocene volcanic activity in Kamchatka, and thus constrain an important component of the Pacific Ring of Fire.
Late Glacial to Holocene paleoenvironmental change on the northwestern Pacific seaboard, Kamchatka Peninsula (Russia) (2017)
Pendea Ionel Florin, Ponomareva Vera, Bourgeois Joanne, Zubrow Ezra B.W., Portnyagin Maxim, Ponkratova Irina, Harmsen Hans, Korosec Gregory Late Glacial to Holocene paleoenvironmental change on the northwestern Pacific seaboard, Kamchatka Peninsula (Russia) // Quaternary Science Reviews. 2017. V. 157. P. 14-28. doi:10.1016/j.quascirev.2016.11.035.    Аннотация
We used a new sedimentary record from a small kettle wetland to reconstruct the Late Glacial and Holocene vegetation and fire history of the Krutoberegovo-Ust Kamchatsk region in eastern Kamchatka Peninsula (Russia). Pollen and charcoal data suggest that the Late Glacial landscape was dominated by a relatively fire-prone Larix forest-tundra during the Greenland Interstadial complex (GI 1) and a subarctic steppe during the Younger Dryas (GS1). The onset of the Holocene is marked by the reappearance of trees (mainly Alnus incana) within a fern and shrub dominated landscape. The Holocene Thermal Maximum (HTM) features shifting vegetational communities dominated by Alnus shrubs, diverse forb species, and locally abundant aquatic plants. The HTM is further defined by the first appearance of stone birch forests (Betula ermanii) – Kamchatka's most abundant modern tree species. The Late Holocene is marked by shifts in forest dynamics and forest-graminoid ratio and the appearance of new non-arboreal taxa such as bayberry (Myrica) and meadow rue (Filipendula). Kamchatka is one of Earth's most active volcanic regions. During the Late Glacial and Holocene, Kamchatka's volcanoes spread large quantities of tephra over the study region. Thirty-four tephra falls have been identified at the site. The events represented by most of these tephra falls have not left evidence of major impacts on the vegetation although some of the thicker tephras caused expansion of grasses (Poaceae) and, at least in one case, forest die-out and increased fire activity.
Late Holocene diatom assemblages in a lake-sediment core from Central Kamchatka, Russia (2012)
Hoff U., Dirksen O., Dirksen V., Herzschuh U., Hubberten H.-W., Meyer H., van den Bogaard C., Diekmann B. Late Holocene diatom assemblages in a lake-sediment core from Central Kamchatka, Russia // Journal of Paleolimnology. 2012. V. 47. V. 4. P. 549-560. doi: 10.1007/s10933-012-9580-y.    Аннотация
Fossil diatom assemblages in a sediment core from a small lake in Central Kamchatka (Russia) were used to reconstruct palaeoenvironmental conditions of the late Holocene. The waterbody may be a kettle lake that formed on a moraine of the Two-Yurts Lake Valley, located on the eastern slope of the Central Kamchatka Mountain Chain. At present, it is a seepage lake with no surficial outflow. Fossil diatom assemblages show an almost constant ratio between planktonic and periphytic forms throughout the record. Downcore variations in the relative abundances of diatom species enabled division of the core into four diatom assemblage zones, mainly related to changes in abundances of Aulacoseira subarctica, Stephanodiscus minutulus, and Discostella pseudostelligera and several benthic species. Associated variations in the composition and content of organic matter are consistent with the diatom stratigraphy. The oldest recovered sediments date to about 3220 BC. They lie below a sedimentation hiatus and likely include reworked deposits from nearby Two-Yurts Lake. The initial lake stage between 870 and 400 BC was characterized by acidic shallow-water conditions. Between 400 BC and AD 1400, lacustrine conditions were established, with highest contributions from planktonic diatoms. The interval between AD 1400 and 1900 might reflect summer cooling during the Little Ice Age, indicated by diatoms that prefer strong turbulence, nutrient recycling and cooler summer conditions. The timing of palaeolimnological changes generally fits the pattern of neoglacial cooling during the late Holocene on Kamchatka and in the neighbouring Sea of Okhotsk, mainly driven by the prevailing modes of regional atmospheric circulation.
Late Pleistocene - Holocene Volcanism on the Kamchatka Peninsula, Northwest Pacific Region (2007)
Ponomareva V.V., Churikova T., Melekestsev I.V., Braitseva O.A., Pevzner M., Sulerzhitskii L. Late Pleistocene - Holocene Volcanism on the Kamchatka Peninsula, Northwest Pacific Region // Volcanism and Subduction: The Kamchatka Region. 2007. V. 172. P. 165-198. № 10.1029/172GM15.    Аннотация
Late Pleistocene-Holocene volcanism in Kamchatka results from the subduction of the
Pacific Plate under the peninsula and forms three volcanic belts arranged in en echelon manner
from southeast to northwest. The cross-arc extent of recent volcanism exceeds 250 km and
is one of the widest worldwide. All the belts are dominated by mafic rocks. Eruptives with
SiO2>57% constitute ~25% of the most productive Central Kamchatka Depression belt and
~30% of the Eastern volcanic front, but <10% of the least productive Sredinny Range belt.
All the Kamchatka volcanic rocks exhibit typical arc-type signatures and are represented
by basalt-rhyolite series differing in alkalis. Typical Kamchatka arc basalts display a strong
increase in LILE, LREE and HFSE from the front to the back-arc. La/Yb and Nb/Zr increase
from the arc front to the back arc while B/Li and As, Sb, B, Cl and S concentrations decrease.
The initial mantle source below Kamchatka ranges from N-MORB-like in the volcanic front
and Central Kamchatka Depression to more enriched in the back arc. Rocks from the Central
Kamchatka Depression range in 87Sr/86Sr ratios from 0.70334 to 0.70366, but have almost
constant Nd isotopic ratios (143Nd/144Nd 0.51307–0.51312). This correlates with the highest
U/Th ratios in these rocks and suggest the highest fluid-flux in the source region.
Holocene large eruptions and eruptive histories of individual Holocene volcanoes have been
studied with the help of tephrochronology and 14C dating that permits analysis of time-space
patterns of volcanic activity, evolution of the erupted products, and volcanic hazards.
Late Pleistocene to Holocene activity at Bakening volcano and surrounding monogenetic centers (Kamchatka): volcanic geology and geochemical evolution (2000)
Dorendorf F., Churikova T., Koloskov A., Wörner G. Late Pleistocene to Holocene activity at Bakening volcano and surrounding monogenetic centers (Kamchatka): volcanic geology and geochemical evolution // Journal of Volcanology and Geothermal Research. 2000. V. 104. № 1–4. P. 131 - 151. doi: 10.1016/S0377-0273(00)00203-1.    Аннотация
The different roles of variable mantle sources and intra-crustal differentiation processes at Bakening volcano (Kamchatka) and contemporaneous basaltic monogenetic centers are studied using major and trace elements and isotopic data.

Three suites of volcanic activity are recognized: (1) plateau basalts of Lower Pleistocene age; (2) andesites and dacites of the Bakening volcano, the New Bakening volcano dacitic centers nearby; and (3) contemporaneous basaltic cinder cones erupted along subduction zone—parallel N–S faults. Age-data show that the last eruptions in the Bakening area occurred only 600–1200 years ago, suggesting the volcano is potentially active.

Major element variations and petrographic observations provides evidence for a fractionation assemblage of olivine, clinopyroxene, ±plagioclase, ±magnetite (?) within the basaltic suite. The fractionation in the andesites and dacites is dominated by amphibole, clinopyroxene, orthopyroxene and plagioclase plus minor amounts of magnetite and apatite. The youngest cpx-opx-andesites of Bakening main volcano deviate from that trend. Their source was probably formed by mixing of basaltic magmas into the silicic magma chamber of the Bakening volcano. Overall trace element patterns as well as the Sr–Nd–Pb isotopic compositions are quite similar in all rocks despite large differences in their chemical composition (from basalt to rhyodacite). In detail however, the andesite–dacites of the central Bakening volcano show a stronger enrichment in the more incompatible elements and depletion in HREE compared to the monogenetic basaltic centers. This results in a crossing of the REE-pattern for the two suites. The decrease in the HREEs can be explained by amphibole fractionation. A slab component is less likely because it would result in fractionation of the HREE from each other, which is not observed. The higher relative amounts of LILE in the dacitic and the large scatter in the basaltic rocks must be the result of a variable source enrichment by slab-derived fluids overprinting a variable depleted mantle wedge. The plateau basalts are less depleted in HFSE and show a more fractionated HREE pattern. These lavas could either result from a slab component or the addition of an OIB-type enriched mantle in their source.
Le Volcan Klychevskoy: son Activite de 1932 a 1988 et son Developpement Possible (1989)
Fedotov S.A., Khrenov A.P., Zharinov N.A. Le Volcan Klychevskoy: son Activite de 1932 a 1988 et son Developpement Possible // L` Association Volcanologique Europeenne. 1989. № 18. P. 11-24.
 M
MONITORING AND REPORTING OF KAMCHATKAN VOLCANIC ERUPTIONS (2004)
Gordeev E.I., Senyukov S.L., Girina O.A. MONITORING AND REPORTING OF KAMCHATKAN VOLCANIC ERUPTIONS // Proceedings of the 2nd International Conference on Volcanic Ash and Aviation Safety, June 21-24, 2004, Session 2. Alexandria, Virginia (USA): 2004. P. 43
Magma Chambers beneath the Klyuchevskoy Volcanic Group (2007)
Khubunaya S.A., Gontovaya L.I., Sobolev A.V., Nizkous I.V. Magma Chambers beneath the Klyuchevskoy Volcanic Group // Journal of Volcanology and Seismology. 2007. V. 1. № 2. P. 98-118. doi: 0.1134/S0742046307020029.    Аннотация
A 3D velocity model of the Earth's crust beneath the Klyuchevskoy volcanic group has been constructed using the seismic tomography method. Anomalies of the velocity parameters related to the zones of magma supply to active volcanoes have been distinguished. Petrological data on the composition, temperature, and pressure of generation and crystallization of primary melts of Klyuchevskoy volcano magnesian basalts have been obtained. The primary melt corresponds to picrite (MgO = 13-14 wt %) with an ultimate saturation of SiO2 (49-50 wt %), a high H2O content (2.2-2.9%), and incompatible elements (Sr, Rb, Ba, Hf). This melt is formed at pressures of 15-20 kbar and temperatures of 1280--1320С . Its further crystallization proceeds in intermediate magma chambers at two discrete pressure levels (i.e., greater than 6, and 1-2 kbar). The results of the petrological studies are in good agreement with the seismotomographic model.

Поступила в редакцию 1. 11. 2006 г.
Методом сейсмической томографии построена объемная скоростная модель земной коры под Ключевской группой вулканов. Выделены аномалии скоростных параметров связанных с зонами магматического питания активных вулканов. Получены петрологические данные о составе, температуре и давлении генерации и кристаллизации родоначальных расплавов магнезиальных базальтов Ключевского вулкана. Родоначальный расплав отвечает пикриту (MgO=13-14%,мас) с предельным насыщением SiO2 (49-50%, мас.), высоким содержанием H2O (2,2-2.9%) и несовместимыми элементами (Sr, Rb, Ba, Hf). Он образуется при давлениях 15-20 кбар и температурах 1280-13200С. Его дальнейшая кристаллизация проходит в промежуточных магматических камерах при двух дискретных уровнях давлений (более 6 и 1-2 кбар). Результаты петрологических исследований находятся в хорошем соответствии с сейсмотомографической моделью.
http://repo.kscnet.ru/2129/ [связанный ресурс]
Magma migration at the onset of the 2012–13 Tolbachik eruption revealed by Seismic Amplitude Ratio Analysis (2015)
Caudron Corentin, Taisne Benoit, Kugaenko Yulia, Saltykov Vadim Magma migration at the onset of the 2012–13 Tolbachik eruption revealed by Seismic Amplitude Ratio Analysis // Journal of Volcanology and Geothermal Research. 2015. V. 307. P. 60 - 67. doi: 10.1016/j.jvolgeores.2015.09.010.    Аннотация
Abstract In contrast of the 1975–76 Tolbachik eruption, the 2012–13 Tolbachik eruption was not preceded by any striking change in seismic activity. By processing the Klyuchevskoy volcano group seismic data with the Seismic Amplitude Ratio Analysis (SARA) method, we gain insights into the dynamics of magma movement prior to this important eruption. A clear seismic migration within the seismic swarm, started 20 hours before the reported eruption onset (05:15 UTC, 26 November 2012). This migration proceeded in different phases and ended when eruptive tremor, corresponding to lava flows, was recorded (at ~ 11:00 UTC, 27 November 2012). In order to get a first order approximation of the magma location, we compare the calculated seismic intensity ratios with the theoretical ones. As expected, the observations suggest that the seismicity migrated toward the eruption location. However, we explain the pre-eruptive observed ratios by a vertical migration under the northern slope of Plosky Tolbachik volcano followed by a lateral migration toward the eruptive vents. Another migration is also captured by this technique and coincides with a seismic swarm that started 16–20 km to the south of Plosky Tolbachik at 20:31 {UTC} on November 28 and lasted for more than 2 days. This seismic swarm is very similar to the seismicity preceding the 1975–76 Tolbachik eruption and can be considered as a possible aborted eruption.
Magma rates in feeding conduits of different volcanic centres (1981)
Fedotov S.A. Magma rates in feeding conduits of different volcanic centres // Journal of Volcanology and Geothermal Research. 1981. V. 9. № 4. P. 379-394. doi:10.1016/0377-0273(81)90045-7.    Аннотация
A quasi-stationary magma flow rate in asthenospheric and crustal conduits of central type volcanoes and volcanic centres was studied analytically under the following conditions. Magma rises through cylindrical channels in which the magma temperature does not change with time, but the wall rocks are gradually heated. The magma rates were calculated for basaltic, andesitic and dacitic volcanoes using the “continental” and “oceanic” geotherms. It follows from these calculations that the magma supply rate may determine the kind of activity of a volcanic centre, being constant for large and very active volcanoes, intermittent for usual volcanic centres of island arcs or sporadic for volcamic fields, clusters of cinder cones and areal volcanism. Theoretical conclusions are consistent with observational data.





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2018. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru