Chronology of Bezymianny Volcano activity, 1956-2010 (2013)
Girina O.A. Chronology of Bezymianny Volcano activity, 1956-2010 // Journal of Volcanology and Geothermal Research. 2013. Vol. 263. P. 22-41. https://doi.org/10.1016/j.jvolgeores.2013.05.002.
Annotation
Bezymianny Volcano is one of the most active volcanoes in the world. In 1955, for the first time in history, Bezymianny started to erupt and after six months produced a catastrophic eruption with a total volume of eruptive products of more than 3 km3. Following explosive eruption, a lava dome began to grow in the resulting caldera. Lava dome growth continued intermittently for the next 57 years and continues today. During this extended period of lava dome growth, 44 Vulcanian-type strong explosive eruptions occurred between 1965 and 2012. This paper presents a summary of activity at Bezymianny Volcano from 1956 to 2010 with a focus on descriptive details for each event.
Chronology, evolution and morphology of plateau basalt eruptive centers in Avacha River Area, Kamchatka, Russia (1999)
Dirksen O.V., Melekestsev I.V. Chronology, evolution and morphology of plateau basalt eruptive centers in Avacha River Area, Kamchatka, Russia // Volcanology and Seismology. 1999. Vol. 21. № 1. P. 1-27.
Annotation
Nineteen Holocene eruptive centers (cinder cones with lava flows and maars) were located and described in the Avacha horst and anticline zone west of the East Kamchatka volcanic area. A tephrochronological study and the carbon-14 dating of soil and plant remains ranked the eruptive centers into three age groups: 11 000-7700, 3000-2500, and 1200-600 carbon-14 years B. P. The eruptive centers of these groups are believed to have been operating roughly synchronously with the periods of active magma injection in the East Kamchatka volcanic area. Eruptive histories were reconstructed for some of the volcanic centers. The structural and tectonic settings, geographical positions, and elevations of the centers were analyzed. The volume (1.1 km3) and weight (1.8 X 10^9 metric tons) of the erupted rocks were evaluated. The productivity of the plateau basalt volcanism was found to be 10-100 times lower than the plateau basalt productivity in the area of grabens and synclines, possibly, because of the more shallow basement in the horsts and because of the fact that the compression of the crust under uplifting conditions hampered the magma rise toward the surface. Most of the lavas and pyroclastics are basalts of the medium-potassic series, some having medium (54-62) and some elevated (65-70) Kmg values.
Classification of Video Observation Data for Volcanic Activity Monitoring Using Computer Vision and Modern Neural NetWorks (on Klyuchevskoy Volcano Example) (2021)
Korolev S.P., Sorokin A.A., Urmanov I.P., Kamaev A., Girina O.A. Classification of Video Observation Data for Volcanic Activity Monitoring Using Computer Vision and Modern Neural NetWorks (on Klyuchevskoy Volcano Example) // Remote Sensing. 2021. Vol. 13. Vol. 23. № 4747. P. 1-20. https://doi.org/10.3390/rs13234747.
Annotation
Currently, video observation systems are actively used for volcano activity monitoring. Video cameras allow us to remotely assess the state of a dangerous natural object and to detect thermal anomalies if technical capabilities are available. However, continuous use of visible band cameras instead of special tools (for example, thermal cameras), produces large number of images, that require the application of special algorithms both for preliminary filtering out the images with area of interest hidden due to weather or illumination conditions, and for volcano activity detection. Existing algorithms use preselected regions of interest in the frame for analysis. This region could be changed occasionally to observe events in a specific area of the volcano. It is a problem to set it in advance and keep it up to date, especially for an observation network with multiple cameras. The accumulated perennial archives of images with documented eruptions allow us to use modern deep learning technologies for whole frame analysis to solve the specified task. The article presents the development of algorithms to classify volcano images produced by video observation systems. The focus is on developing the algorithms to create a labelled dataset from an unstructured archive using existing and authors proposed techniques. The developed solution was tested using the archive of the video observation system for the volcanoes of Kamchatka, in particular the observation data for the Klyuchevskoy volcano. The tests show the high efficiency of the use of convolutional neural networks in volcano image classification, and the accuracy of classification achieved 91%. The resulting dataset consisting of 15,000 images and labelled in three classes of scenes is the first dataset of this kind of Kamchatka volcanoes. It can be used to develop systems for monitoring other stratovolcanoes that occupy most of the video frame.
Cluster Regime – The New Regime Of Flowing Of Gas-Liquid Mixture In Vertical Columns (Based On Experimental Data) (2009)
Ozerov A.Yu. Cluster Regime – The New Regime Of Flowing Of Gas-Liquid Mixture In Vertical Columns (Based On Experimental Data) // 6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion. Xi’an, China, 11-15 July 2009. 2009. P. FG-30.
Cluster Regime – The New Regime Of Flowing Of Gas-Liquid Mixture In Vertical Columns (Based On Experimental Data) (2010)
Ozerov A.Yu. Cluster Regime – The New Regime Of Flowing Of Gas-Liquid Mixture In Vertical Columns (Based On Experimental Data) // The 6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion. Xi’an, China, 11-15 July 2009. Melville, N.Y.: American Institute of Physics. 2010. Vol. 1207. P. 348-354.
Composition of Magmas of the 1996 Eruption at the Karymskii Volcanic Center, Kamchatka: Evidence from Melt Inclusions (2001)
Tolstykh M.L., Naumov V.B., Ozerov A.Yu., Kononkova N.N. Composition of Magmas of the 1996 Eruption at the Karymskii Volcanic Center, Kamchatka: Evidence from Melt Inclusions // Geochemistry International. 2001. Vol. 39. № 5. P. 447-458.
Connections between arc volcanoes in Central Kamchatka and the subducting slab inferred from local earthquake seismic tomography (2023)
Bushenkova N.A., Koulakov I.Yu., Bergal-Kuvikas Olga, Shapiro Nikolay M., Gordeev E.I., Chebrov D.V., Abkadyrov Ilyas, Jakovlev Andrey, Stupina Tatiana, Novgorodova A., Droznina S.Ya., Huang H. Connections between arc volcanoes in Central Kamchatka and the subducting slab inferred from local earthquake seismic tomography // Journal of Volcanology and Geothermal Research. 2023. Vol. 107768. https://doi.org/10.1016/j.jvolgeores.2023.107768.
Annotation
The area of Central Kamchatka limited by latitudes of 52.5 and 54 degrees includes six active volcanoes (Avacha, Koryaksky, Zhupanovsky, Mutnovsky, Gorely and Opala), as well as a number of dormant and extinct stratovolcanoes, monogenic cones and large calderas. Furthermore, it contains the Malko-Petropavlovsk fracture zone (MPZ), which marks the boundary between two distinct subduction regimes to the south and to the north. We present a new seismic tomography model for this area, which was constructed based on the joint use of data of the Kamchatkan permanent seismic stations and a temporary network installed in the region in 2019–2020. A series of synthetic tests have demonstrated fair resolution of the derived seismic velocity structures in the crust and in the mantle wedge down to ~150 km. The distributions of the P and S wave velocities, and especially the Vp/Vs ratio, clearly highlight the connection between the volcanic centers in Central Kamchatka and the subducting slab. At depths below 40 km depth, we observe two large low-velocity anomalies centered below Zhupanovsky and Mutnovsky volcanoes and covering all other volcanoes in the area. In the vertical sections, the corresponding anomalies of high Vp/Vs ratio have mushroom shapes with the heads spreading along the bottom of the crust, which probably represent the underplating of magma material that feeds the volcanoes of the groups. The tomography results also reveal some important tectonic features, such as a V-shaped fault system in the Avacha Graben, which is the part of the MPZ.
Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka (2007)
Portnyagin Maxim, Hoernle Kaj, Plechov Pavel Yu., Mironov Nikita, Khubunaya Sergey Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka // Earth and Planetary Science Letters. 2007. Vol. 255. № 1-2. P. 53-69. doi: 10.1016/j.epsl.2006.12.005.
Annotation
New and published data on the composition of melt inclusions in olivine (Fo73_yi) from volcanoes of the Kamchatka and northern Kurile Arc are used 1) to evaluate the combined systematics of volatiles (H2O, S, Cl, F) and incompatible trace elements in their parental magmas and mantle sources, 2) to constrain thermal conditions of mantle melting, and 3) to estimate the composition of slab-derived components. We demonstrate that typical Kamchatkan arc-type magmas originate through 5-14% melting of sources similar or slightly more depleted in HFSE (with up to -1 wt.% previous melt extraction) compared to MORB-source mantle, but strongly enriched in H2O,B, Be, Li, Cl. F, LILE, LREE, Th and U. Mean H2O in parental melts f 1.8-2.6 wt.%) decreases with increasing depth to the subducting slab and correlates negatively with both 'fluid-immobile* (e.g. Ti, Na, LREE) and most 'fluid-mobile' (e.g. LILE, S, Cl, F) incompatible elements, implying that solubility in hydrous fluids or amount of water does not directly control the abundance of 'fluid-mobile' incompatible elements. Strong correlation is observed between H2O/Ce and B/Zr (or B/LREE) ratios. Both, calculated H2O in mantle sources (0.1-0.4%) and degrees of melting (5-14%) decrease with increasing depth to the slab indicating that the ultimate source of water in the sub-arc mantle is the subducting oceanic plate and that water flux (together with mantle temperature) governs theextent of mantle melting beneath Kamchatka. A parameterized hydrous melting model [Katzetal. 2003, G3,4(9), 1073] is utilized to estimate that mantle melting beneath Kamchatka occurs at or below the dry peridotite solidus (1245-1330 °C at 1.5-2.0 GPa). Relatively high mantle temperatures (yet lower than beneath back-arc basins and ocean ridges) suggest substantial corner flow driven mantle upwelling beneath Kamchatka in agreement with numerical models implying non-isoviscous mantle wedge rheology. Data from Kamchatka, Mexico and Central America indicate that <5% melting would lake place beneath continental arcs without water flux from the subducting slab. A broad negative correlation appears to exist between crustal thickness and the temperature of magma generation beneath volcanic arcs with larger amounts of decompression melting occurring beneath thinner arc crust (Uihosphere). In agreement with the high mantle temperatures, we observe a systematic change in the composition of slab components with increasing slab depth from solute-poor hydrous fluid beneath the volcanic front to solute-rich hydrous melt or supercritical liquid at deeper depths beneath the rear arc. The solute-rich slab component dominates the budget of LILE, LREE,Th and U in the magmas and originates through wet-melting of subducted sediments and/or altered oceanic crust at > 120 km depth. Melting of the upper parts of subducting plates under water flux from deeper luhosphere (e.g. serpentinites), combined with high .emperatures in the mantie wedge, may be a more common process beneath volcanic arcs than has been previously recognized. 0 2006 Klsevier B.V. All rights reserved.
Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc (2007)
Portnyagin Maxim, Hoernle Kaj, Plechov Pavel, Mironov Nikita, Khubunaya Sergey Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc // Earth and Planetary Science Letters. 2007. Т. 255. № 1-2. С. 53-69. doi:10.1016/j.epsl.2006.12.005.
Constraints on unrest in the Tolbachik volcanic zone in Kamchatka prior the 2012–13 flank fissure eruption of Plosky Tolbachik volcano from local seismicity and GPS data (2015)
Kugaenko Yulia, Titkov Nikolay, Saltykov Vadim Constraints on unrest in the Tolbachik volcanic zone in Kamchatka prior the 2012–13 flank fissure eruption of Plosky Tolbachik volcano from local seismicity and GPS data // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 38 - 46. doi: 10.1016/j.jvolgeores.2015.05.020.
Annotation
Abstract A new fissure eruption began on 27 November 2012 on the southern slope of Plosky Tolbachik volcano, which is located in central Kamchatka, Russia, and is part of the Klyuchevskoy volcano group. We analyzed the displacement of the earth surface and the seismicity during several months before the eruption onset. According to seismic and GPS data the eruption was preceded by about 4–5 months (July–November 2012) of synchronous crustal deformation and seismicity. The seismic anomaly comprises low energy level seismicity (mainly M = 1.2–2.3) under Plosky Tolbachik volcano at a depth of less than 5 km. In the 2–3 weeks immediately preceding the eruption the rate of seismicity and the amount of radiated seismic energy exceeded the long-term average values (2000–2011) by more than 40 times. The deformation anomaly was recorded by displacement of the GPS points at distances from 20 to 60 km to the north of Tolbachik. The principal axis of the compressive strain was approximately directed towards the Tolbachik eruption site. The permanent GPS network detected radial compression and tangential stretching. The compressive strain reached about 10− 7 prior to eruption onset. The comparable duration of seismic and deformation anomalies (~ 4–5 months before the eruption) is consistent with a common origin, connected to magma rising from depth, and is interpreted as indicating that they were medium-term precursors to the eruption. Data recorded during this unrest episode of the Tolbachik volcanic zone will contribute to understanding of the reawakening of volcanic activity in this region and others worldwide with similar characteristics.