Библиография
Вулкан:
Группировать:  
Выбрать:     Все     "     0     1     2     3     4     5     7     A     B     C     D     E     F     G     H     I     K     L     M     N     O     P     Q     R     S     T     U     V     W          А     Б     В     Г     Д     Е     Ж     З     И     К     Л     М     Н     О     П     Р     С     Т     У     Ф     Х     Ц     Ч     Ш     Щ     Э     Ю     Я     
Записей: 2735
 F
From high-Mg basalts to dacites: continued crystal fractionation in the Klyuchevskoy-Bezymianny magma plumbing system, Kamchatka (2003)
Almeev R.R., Kimura J.I., Ozerov A.Yu., Ariskin A.A., Barmina G.S. From high-Mg basalts to dacites: continued crystal fractionation in the Klyuchevskoy-Bezymianny magma plumbing system, Kamchatka // Goldschmidt Conference Abstracts 2003. 2003. P. A13
 G
Gas composition in Mutnovsky geothermal field: Role of meteoric water (2011)
Maximov A.P., Firstov P.P., Chernev I.I., Shapar V.N. Gas composition in Mutnovsky geothermal field: Role of meteoric water // 11th Gas Workshop. 1-10 September 2011, Kamchatka, Russia. 2011. P. 31
Gas Emissions From Volcanoes of the Kuril Island Arc (NW Pacific): Geochemistry and Fluxes (2018)
Taran Yuri, Zelenski Mikhail, Chaplygin Ilya, Malik Natalia, Campion Robin, Inguaggiato Salvatore, Pokrovsky Boris, Kalacheva Elena, Melnikov Dmitry, Kazahaya Ryunosuke, Fischer Tobias Gas Emissions From Volcanoes of the Kuril Island Arc (NW Pacific): Geochemistry and Fluxes // Geochemistry, Geophysics, Geosystems. 2018. Vol. 19. Vol. 6. P. 1859-1880. doi: 10.1029/2018GC007477.
   Аннотация
The Kuril Island arc extending for about 1,200 km from Kamchatka Peninsula to Hokkaido Island is a typical active subduction zone with ∼40 historically active subaerial volcanoes, some of which are persistently degassing. Seven Kurilian volcanoes (Ebeko, Sinarka, Kuntomintar, Chirinkotan, Pallas, Berg, and Kudryavy) on six islands (Paramushir, Shiashkotan, Chirinkotan, Ketoy, Urup, and Iturup) emit into the atmosphere > 90% of the total fumarolic gas of the arc. During the field campaigns in 2015–2017 direct sampling of fumaroles, MultiGas measurements of the fumarolic plumes and DOAS remote determinations of the SO2 flux were conducted on these volcanoes. Maximal temperatures of the fumaroles in 2015–2016 were 510°C (Ebeko), 440°C (Sinarka), 260°C (Kuntomintar), 720°C (Pallas), and 820°C (Kudryavy). The total SO2 flux (in metric tons per day) from fumarolic fields of the studied volcanoes was measured as ∼1,800 ± 300 t/d, and the CO2 flux is estimated as 1,250 ± 400 t/d. Geochemical characteristics of the sampled gases include δD and δ18O of fumarolic condensates, δ13C of CO2, δ34S of the total sulfur, ratios 3He/4He and 40Ar/36Ar, concentrations of the major gas species, and trace elements in the volcanic gas condensates. The mole ratios C/S are generally <1. All volcanoes of the arc, except the southernmost Mendeleev and Golovnin volcanoes on Kunashir Island, emit gases with 3He/4He values of >7RA (where RA is the atmospheric 3He/4He). The highest 3He/4He ratios of 8.3RA were measured in fumaroles of the Pallas volcano (Ketoy Island) in the middle of the arc.
Gas metasomatism: Experiments on natural Fumaroles of Kudryavyi Volcano, Iturup, Kuril Islands (2000)
Bocharnikov R.E., Shmulovich K I., Tkachenko S.I., Korzhinskii M.A., Steinberg G.S. Gas metasomatism: Experiments on natural Fumaroles of Kudryavyi Volcano, Iturup, Kuril Islands // Geochemistry International. 2000. Vol. 38. P. 186-193.
   Аннотация
Direct experiments on high-temperature (910 and 620°C) fumaroles of Kudryavy Volcano have demonstrated that low-density volcanic gas interacts with rock-forming and ore minerals (12 minerals were studied). The mechanism of the interaction is determined by gas metasomatism reactions: (a) at given conditions, sphalerite, calcite, barite, and gypsum are either dissolved and removed by gas or replaced with other minerals (calcite → anhydrite); (b) reactions with silicates (feldspars, olivine, and biotite) proceed owing to diffusion cation exchange. Structural rearrangements in biotite are possible due to dehydration and loss of alkalis and aluminum. The kinetics of interaction between hot gas and silicates is governed by the rate of cation diffusion in the mineral at given conditions. Precipitation of sublimates on the surfaces of minerals does not affect much the process of reactions. Interaction between volcanic gas and minerals results in albitization of feldspars and ferruginization of olivine and biotite. The scale of metasomatism in the crystalline rocks of Kudryavyi Volcano has been estimated as about 3 mm in 115 years.
Gas regime defining the mechanism of periodic lava fountaining of basaltic volcanoes (experimental modeling) (2011)
Ozerov A.Yu. Gas regime defining the mechanism of periodic lava fountaining of basaltic volcanoes (experimental modeling) // Commission on the chemistry of volcanic gases (CCVG) - IAVCEI. 11th Gas Workshop, Kamchatka, Russia. 1-10 September 2011. 2011. P. 35
Gas-hydrodynamic model of basalt explosions (based on experimental data) (2008)
Ozerov A. Gas-hydrodynamic model of basalt explosions (based on experimental data) // 33rd International Geological Congress. Oslo, Norway. Abstracts. 2008.
Generation of calc-alkaline andesite of the Tatun volcanic group (Taiwan) within an extensional environment by crystal fractionation (2014)
Shellnutt J. Gregory, Belousov Alexander, Belousova Marina, Wang Kuo-Lung, Zellmer Georg F. Generation of calc-alkaline andesite of the Tatun volcanic group (Taiwan) within an extensional environment by crystal fractionation // International Geology Review. 2014. Vol. 56. № 9. P. 1156-1171. doi:10.1080/00206814.2014.921865.
Generation of pyroclastic flows by explosive interaction of lava flows with ice/water-saturated substrate (2011)
Belousov Alexander, Behncke Boris, Belousova Marina Generation of pyroclastic flows by explosive interaction of lava flows with ice/water-saturated substrate // Journal of Volcanology and Geothermal Research. 2011. Vol. 202. № 1-2. P. 60-72. doi:10.1016/j.jvolgeores.2011.01.004.
Genesis of High-Alumina Basalts from Klyuchevskoi Volcano (1995)
Ariskin A.A., Barmina G.S., Ozerov A.Yu., Nielsen R.L. Genesis of High-Alumina Basalts from Klyuchevskoi Volcano // Petrology. 1995. Vol. 3. № 5. P. 449-472.
Genesis of Quaternary volcanism of high-Mg andesitic rocks in the northeast Kamchatka Peninsula (2016)
Nishizawa Tatsuji, Nakamura Hitomi, Churikova T., Gordeychik B., Ishizuka Osamu, Iwamori Hikaru Genesis of Quaternary volcanism of high-Mg andesitic rocks in the northeast Kamchatka Peninsula // Japan Geoscience Union Meeting. 22-26 May 2016, Makuhari, Messe. 2016. P. SVC48-02.
   Аннотация
Arc magmatism is a product of subduction factory, involving thermal and chemical interactions
between a subducted slab as a material input and mantle wedge as a processing factory. In turn, the
compositions of arc magma provide invaluable information concerning the material input and the
interactions. The northeast Kamchatka Peninsula is an ideal field to examine such interactions and
relationships, being characterized by (1) subduction of the Emperor Seamount Chain (Davaille and
Lees, 2004), and (2) possible material and thermal interaction among the subducted slab, the
overlying mantle wedge and the sub-slab mantle via the edge of subducted Pacific slab (Portnyagin
and Manea, 2008). Within this area, a monogenetic volcanic group occurs along the east coast,
including high-Mg andesitic rocks and relatively primitive basalts (East Cones, EC (Fedorenko,
1969)). We have conducted geochemical studies of the EC lavas, with bulk rock major and trace
elements, and K-Ar and Ar-Ar ages, based on which a possible contribution of subducted seamounts
and its relation to the tectonic setting are discussed.
The elemental compositions indicate that the lavas from individual cones have distinct mantle
sources with different amounts and/or compositions of slab-derived fluids. Based on mass balance,
water content and melting phase relations, we estimate the melting P-T conditions to bet ~1200 ℃
at 1.5 GPa, while the slab surface temperature is 620 –730 ℃ (at 50-80 km depth). Compared with
the southern part of Kamchatka, the slab surface temperature beneath EC seems to be high due to the
thinner Pacific slab associated with the seamount chain and/or the plate rejuvenation from a mantle
plume impact (Davaille and Lees, 2004; Manea and Manea, 2007).
The K-Ar and Ar-Ar ages of the Middle Pleistocene are consistent with the tephrochronological
study (Uspensky and Shapiro, 1984) and the present tectonic setting after 2 Ma (Lander and Shapiro,
2007). The high-Mg andesite with the highest SiO2 content in the EC lavas shows the oldest age
(0.73 ±0.06 Ma) within not only EC but also the northeast part of Kamchatka (e.g., Churikova et
al., 2015, IAVCEI). On the other hand, the rest of EC lava samples show relatively younger ages to
0.18 ±0.07 Ma. These results suggest that the EC lavas including high-Mg andesite and basalt were
generated by mantle flux-melting induced by dehydration of a subducted seamount inheriting a local
thermal anomaly (Nishizawa et al., 2014, JpGU; 2015, JpGU).