Главная БиблиографияПо названиям
 
 Библиография
Вулкан: Расширенный поиск

Выбрать:   |   Все   |   "   |   0   |   1   |   2   |   3   |   4   |   7   |   A   |   B   |   C   |   D   |   E   |   F   |   G   |   H   |   I   |   K   |   L   |   M   |   N   |   O   |   P   |   Q   |   R   |   S   |   T   |   U   |   V   |   W   |   А   |   Б   |   В   |   Г   |   Д   |   Е   |   Ж   |   З   |   И   |   К   |   Л   |   М   |   Н   |   О   |   П   |   Р   |   С   |   Т   |   У   |   Ф   |   Х   |   Ц   |   Ч   |   Ш   |   Э   |   Ю   |   Я   |    Количество записей: 1899
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
 П
Последнее кальдерообразующее извержение на Камчатке (вулкан Ксудач) 1700-1800 14С-лет назад (1995)
Брайцева О.А., Мелекесцев И.В., Пономарева В.В., Кирьянов В.Ю. Последнее кальдерообразующее извержение на Камчатке (вулкан Ксудач) 1700-1800 14С-лет назад // Вулканология и сейсмология. 1995. № 2. С. 30-49.    Аннотация
Катастрофическое эксплозивное извержение, происшедшее 1700-1800 14С-лет назад на вулкане Ксудач - крупнейшее плинианское извержение нашей эры (18-19 км3 пирокластики: 15 км3 тефры, 3-4 км3 материала пирокластических потоков; размер кальдеры обрушения 4 x 6,5 км, объем полости 6,5-7 км3) и последнее кальдерообразующее извержение в Курило-Камчатском регионе с высотой эруптивной колонны, достигшей 23 км. По типу и параметрам оно сходно с извержением вулкана Кракатау в 1883 г. Ось пеплопада была направлена на север. Тефра прослежена на расстояние более 1000 км. Извержение началось как фреато-магматическое, затем процесс приобрел ритмический характер: в каждом ритме за первичным выбросом пемзовой тефры следовало формирование пирокластических потоков длиной до 20 км, сопровождавшихся пирокластическими волнами пепловых облаков. Продукты извержения имели риолит-дацитовый состав, который оставался неизменным в ходе извержения. На посткальдерной стадии, при формировании в кальдере конуса Штюбеля, на поверхность стал поступать андезитобазальтовый материал. Предполагается, что спусковым механизмом для начала извержения было внедрение свежей магмы основного состава и смешение ее с кислой магмой существовавшего ранее очага. Извержение должно было оказать влияние на климат и состояние озонового слоя Земли и найти отражение в виде кислотного пика в Гренландском ледниковом щите.

The largest Plinian eruption of our era and the latest caldera-forming eruption in the Kurile-Kamchatka region occurred 1700-1800 14C yr BP from the Ksudach volcano. This catastrophic explosive eruption is similar in type and characteristics to the 1883 Krakatau eruption. The volume of pyroclastics ejected was 18-19 km3, including 15 km3 of tephra and 3-4 km of pyroclastic flows. The eruptive column reached 23 km height. A collapse caldera was 4 X 6,5 km in size with a cavity volume of 6.5-7 km3. Tephra was deposited to the north of the volcano to a distance of more than 1000 km. Pyroclastic flows accompanied by ash cloud pyroclastic surges were as long as 20 km. The eruption was first phreatomagmatic, then it became rhythmic, and each rhythm began with the pumiceous tephra eruption followed by the pyroclastic flow formation. Erupted products were rhyolite-dacite remaining invariable during the whole eruption. At the post-caldera stage when the Shtyubel cone started to form within the caldera the basaltic-andesite material began to come to the surface. The driving mechanism of the onset of the eruption is suggested to be an intrusion of magma of basic composition and its mixing with acid magma from a previously existed chamber. The eruption had substantial environmental impact and may have produced a large acidity peak in the Greenland glacial shield.
http://repo.kscnet.ru/1109/ [связанный ресурс]
Последовательность и условия накопления озерных вулканогенно-осадочных отложений по данным диатомового анализа (1980)
Лупикина Е.Г. Последовательность и условия накопления озерных вулканогенно-осадочных отложений по данным диатомового анализа // Вулканический центр: строение, динамика, вещество (Карымская структура). 1980. С. 23-52.
Последовательность структурообразования и вулканизма в купольно-кольцевой вулкано-тектонической структуре (1980)
Масуренков Ю.П., Егорова И.А., Кочегура В.В., Лупикина Е.Г., Ананьев В.В., Трошин А.Н. Последовательность структурообразования и вулканизма в купольно-кольцевой вулкано-тектонической структуре // Вулканизм и вулканоструктуры. Тбилиси: 1980. С. 49-50.
Постэруптивная деятельность в кальдере Академии Наук (Камчатка): минеральные новообразования, содержание радона в спонтанных газах и биотические изменения (1998)
Вергасова Л.П., Карпов Г.А., Лупикина Е.Г., Андреев В.И., Надежная Т.Б. Постэруптивная деятельность в кальдере Академии Наук (Камчатка): минеральные новообразования, содержание радона в спонтанных газах и биотические изменения // Вулканология и сейсмология. 1998. № 2. С. 49-65.
Постэруптивная стадия побочных кратеров Пийпа (1974)
Кирсанов И.Т., Серафимова Е.К., Кирсанова Т.П., Рожков А.М., Марков И.А. Постэруптивная стадия побочных кратеров Пийпа // Геодинамика вулканизма и гидротермального процесса. Тезисы докладов IV Всесоюзного вулканологического совещания, сентябрь 1974 г. Петропавловск-Камчатский: ИВ ДВНЦ АН СССР. 1974. С. 178
Потенциальная опасность от извержений Авачинского вулкана (2001)
Базанова Л.И., Брайцева О.А., Мелекесцев И.В., Пузанков М.Ю. Потенциальная опасность от извержений Авачинского вулкана // Геодинамика и вулканизм Курило-Камчатской островодужной системы. 2001. С. 390-407.    Аннотация
Реконструирована история эруптивной активности Авачинского вулкана за последние 10 тыс.лет, определены возраст, частота и параметры прошлых извержений, характер и масштабы опасных вулканических явлений. Дана оценка вулканической опасности, связанной с деятельностью Молодого конуса вулкана, начавшего формироваться 3800 лет назад. Характер и параметры его извержений положены в основу составленной карты вулканической опасности для прилегающих территорий.

History of eruptive activity of Avachinsky volcano over the last 10 mln years has been reconstructed; age, frequency and parameters of the past eruptions, character and scale of potentially hazardous volcanic phenomena have been determined. Assessment of volcanic hazard has been given associated with the activity of Molodoi cone which began its formation 38000 years ago. Specific features of its eruption are used as the basis for the map of volcanic hazard for adjacent territories.
Потухшие вулканы Верхне-Еловского района на Камчатке (1948)
Меняйлов А.А., Набоко С.И. Потухшие вулканы Верхне-Еловского района на Камчатке // Труды Камчатской вулканологической станции. 1948. № 2. С. 24-65.
Почвенно-газовая и термометрическая съемка (1986)
Вакин Е.А., Лялин Г.Н., Рожков А.М. Почвенно-газовая и термометрическая съемка // Геотермические и геохимические исследования высокотемпературных гидротерм. 1986. С. 78-108.
Почвенно-пирокластический чехол - новый перспективный объект для палеомагнитных исследований на Камчатке (1979)
Брайцева О.А., Мелекесцев И.В. Почвенно-пирокластический чехол - новый перспективный объект для палеомагнитных исследований на Камчатке // Проблемы изучения палеовековых вариаций магнитного поля Земли. Владивосток: 1979. С. 27-35.
Почему в 1738 году С.П. Крашенинников назвал Авачинскую сопку на Камчатке "Востроверхой"? (2002)
Мелекесцев И.В., Базанова Л.И., Двигало В.Н. Почему в 1738 году С.П. Крашенинников назвал Авачинскую сопку на Камчатке "Востроверхой"? // Тезисы докладов ежегодной научной сессии, посвященной Дню вулканолога, 3-4 апреля 2002 г., г. Петропавловск-Камчатский. Петропавловск-Камчатский: КГПУ. 2002. С. 4-6.
Предбиологические соединения - результат процессов, происходящих в пеплово-газовых вулканических тучах (1974)
Мархинин Е.К. Предбиологические соединения - результат процессов, происходящих в пеплово-газовых вулканических тучах // Геодинамика вулканизма и гидротермального процесса. Тезисы докладов IV Всесоюзного вулканологического совещания, сентябрь 1974 г. Петропавловск-Камчатский: ИВ ДВНЦ АН СССР. 1974. С. 119
Предварительные результаты изучения глубин магматических палеоочагов Авачинского вулкана петромагнитным методом (титаномагнетитовый геобарометр) (2013)
Зубов А.Г. Предварительные результаты изучения глубин магматических палеоочагов Авачинского вулкана петромагнитным методом (титаномагнетитовый геобарометр) // Вулканизм и связанные с ним процессы. Традиционная региональная научная конференция, посвященная Дню Вулканолога. Тезиcы докладов. 29 - 30 марта 2012 г., Петропавловск-Камчатский. 2013. С. 25-26.
Предварительные результаты палеомагнитного изучения мегаплагиофировых лав щитового вулкана Плоских сопок (Ключевская группа вулканов, Камчатка) (2008)
Зубов А.Г. Предварительные результаты палеомагнитного изучения мегаплагиофировых лав щитового вулкана Плоских сопок (Ключевская группа вулканов, Камчатка) // Материалы конференции, посвященной Дню вулканолога, Петропавловск-Камчатский, 27-29 марта 2008 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2008. С. 90-99.    Аннотация
В этой работе была осуществлена попытка проверить обнаруженную О.М. Алыповой палеомагнитную аномалию в некоторых мегаплагиофировых лавах щитового вулкана Плоских сопок Ключевской группы вулканов. Новые палеомагнитные данные по таким же сингенетичным лавам из двух точек отбора оказались искажёнными скрытыми деформациями. После коррекции на деформации окончательные палеомагнитные результаты оказались в зоне не аномальных значений. Поиск этой палеомагнитной аномалии следует расширить.

The task of this study is to examine a paleomagnetic anomaly which was first discovered by O.M. Alypova in certain megaplagiophyre lavas from Plosky Sopki shield volcano belonging to the Kluchevskaya group of volcanoes. New paleomagnetic data from the same idiogenous lavas at two sampling points were found distorted by lurking deformations.
After deformation corrections the final paleomagnetic results appeared in non-anomalous zone. The search of this paleomagnetic anomaly should be extended.
Предвестники вулканических извержений (1985)
Токарев П.И. Предвестники вулканических извержений // Вулканология и сейсмология. 1985. № 4. С. 108-119.
Предисловие (1978)
Федотов С.А. Предисловие // Геологические и геофизические данные о Большом трещинном Толбачинском извержении 1975-1976 гг.. 1978. С. 3-5.
Предисловие к "Каталогу действующих вулканов СССР" (1957)
Влодавец В.И., Горшков Г.С., Пийп Б.И. Предисловие к "Каталогу действующих вулканов СССР" // Бюллетень вулканологических станций. 1957. № 25. С. 3-4.
Преобразование эффузивных пород под воздействием кислотного выщелачивания поверхностными термальными водами (геотермальная система Баранского, о-в Итуруп) (2014)
Ладыгин В.М., Фролова Ю.В., Рычагов С.Н. Преобразование эффузивных пород под воздействием кислотного выщелачивания поверхностными термальными водами (геотермальная система Баранского, о-в Итуруп) // Вулканология и сейсмология. 2014. № 1. С. 20-37.    Аннотация
Рассмотрены закономерности преобразования эффузивных пород вулкана Баранского (центральная часть о-ва Итуруп) под влиянием сульфатно-хлоридных кислых и ультракислых вод термального ручья Кипящая Речка. Получены данные об изменении их химического и минерального состава, структурных особенностей, пористости и петрофизических свойств. Описаны динамика процесса выщелачивания и стадии преобразования пород в проточной кислой (ультракислой) геотермальной среде. Отмечается, что механизм сернокислотного выщелачивания пород на дневной поверхности может быть во многом аналогичен процессу образования вторичных кварцитов (монокварцитов) в зонах восходящих потоков кислых газов над малыми интрузиями габбродиоритов – диоритов.

Abstract—This paper discusses patterns that are observable in the alteration of effusive rocks that were discharged by Baranskii Volcano (central Iturup Island) under the action of sulfate chloride as well as acidic and ultra-acidic water (in the Kipyashchaya Rechka thermal brook). We acquired data on changes in the chemical and mineralogic composition of the rocks, structural features, porosity, and petrophysical properties. The dynamics of leaching and the leaching phase in a flowing acidic (ultra-acidic) geothermal environment are described. We note that the mechanism that is responsible for hydrogen sulfate leaching of rocks at the ground surface may be largely analogous to the generation of secondary quartzites (mono-quartzites) in the zones of ascending acidic gas flows above small gabbro–diorite and diorite intrusions.
Применение данных OMI/Aura для задач мониторинга извержений вулканов Камчатки (2008)
Мельников Д.В. Применение данных OMI/Aura для задач мониторинга извержений вулканов Камчатки // Современные проблемы дистанционного зондирования Земли из космоса. 2008. Т. 5. № 1. С. 371-375.
Применение данных со спутника Himawari-8 для мониторинга вулканов Камчатки и Северных Курил (2017)
Гирина О.А., Крамарева Л.С., Лупян Е.А., Сорокин А.А., Мельников Д.В., Маневич А.Г., Уваров И.А., Кашницкий А.В., Бурцев М.А., Марченков В.В., Бриль А.А., Мазуров А.А. Применение данных со спутника Himawari-8 для мониторинга вулканов Камчатки и Северных Курил // Современные проблемы дистанционного зондирования Земли из космоса. Тезисы докладов. Пятнадцатая Всероссийская открытая конференция. 13-17 ноября 2017 г. М.: ИКИ РАН. 2017. С. 82
Применение данных спутника Himawari для мониторинга вулканов Камчатки (2017)
Гирина О.А., Крамарева Л.С., Лупян Е.А., Мельников Д.В., Маневич А.Г., Сорокин А.А., Уваров И.А., Кашницкий А.В., Бурцев М.А., Марченков В.В., Бриль А.А., Мазуров А.А., Романова И.М., Мальковский С.И. Применение данных спутника Himawari для мониторинга вулканов Камчатки // Современные проблемы дистанционного зондирования Земли из космоса. 2017. Т. 14. № 7. С. 65-76. doi: 10.21046/2070-7401-2017-14-7-65-76.    Аннотация
Действующие вулканы Камчатки ― одни из самых активных в мире. Ежегодно здесь происходят извержения 3−7 вулканов, во время которых эксплозии поднимают пепел до 10−15 км над уровнем моря и пепловые облака распространяются на тысячи километров от вулканов. Активная вулканическая деятельность может стать причиной пеплопадов в городах и поселках, уничтожения лесов и коммуникаций. Пепловые облака и шлейфы представляют серьезную опасность для полетов современной реактивной авиации. Для снижения вулканоопасности для авиаперевозок и населения с 1993 г. Камчатская группа реагирования на вулканические извержения (KVERT) выполняет ежедневный мониторинг вулканов. С 2014 г. спутниковый мониторинг вулканов проводится учеными KVERT с помощью информационной системы VolSatView, в которую с 2016 г. начали поступать данные с геостационарного спутника Himawari-8. В системе созданы специальные инструменты, позволяющие работать с оперативно поступающими данными и анализировать ряды долговременных наблюдений. Применение данных Himawari-8, а также инструментов, реализованных в VolSatView для работы с ними, позволяет: значительно повысить оперативность обнаружения эксплозивных событий, происходящих в регионе; определять начало эруптивных событий с точностью до 10 и менее минут; отслеживать и прогнозировать все изменения динамики активности вулканов, в том числе близкое начало сильных эксплозивных событий. Статья посвящена описанию особенностей технологии интеграции данных Himawari-8 в VolSatView и основным возможностям работы с ними, реализованным в настоящее время в системе.

The volcanoes of Kamchatka are the most active in the world. Annually, from 3 to 7 volcanoes produce eruptions, during which the explosions eject ash to 10−15 km above sea level, and ash clouds spread thousands of kilometers from volcanoes. Strenuous volcanic activity could cause ash falls in towns and settlements, destruction of forests and communications. Ash clouds and plumes pose a serious threat to the present-day jet aviation. Since 1993, the Kamchatka Volcanic Eruption Response Team (KVERT) has conducted daily monitoring of Kamchatka volcanoes to mitigate volcanic hazards to airline operations and population. Since 2014, satellite monitoring of volcanoes is carried out by KVERT scientists using the VolSatView information system that since 2016 has utilized data from Himawari-8 geostationary satellite. The system has created special tools that allow us to work with promptly received data, as well as analyze series of long-term observations. Using data from Himawari-8, as well as the tools implemented in VolSatView to work with them, enables to: significantly raise the efficient response to detection of explosive events in the region; identify the onset of eruptive events with an accuracy of 10 minutes or less; track and forecast all changes in the dynamics of volcanic activity, including the near onset of strong explosive events. The paper describes the technology features for integrating Himawari-8 data into VolSatView and the main possibilities of working with them, implemented now
in the system.





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2018. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru