Main Bibliography
 
 Bibliography
Volcano:

 
Records: 2138
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
Меняйлов И.А., Никитина Л.П., Шапарь В.Н., Литасова С.Н. Водные вытяжки из пеплов Новых Толбачинских вулканов // Бюллетень вулканологических станций. 1979. № 56. С. 149-161.
Михайлова-Филиппова М.И., Федотов С.А. Течение магмы по цилиндрическому каналу, питающему вулкан: математическая модель // Вулканология и сейсмология. 1996. № 6. С. 20-30.    Annotation
Предложены математическая модель и метод расчета течений магмы с вязкостью, зависящей от температуры, по питающему цилиндрическому каналу вулкана. Приведен пример расчета: радиус канала 10 м, глубина магматического очага 30 км, избыточное давление в очаге 20 бар, температура магмы в очаге 1300°С, вязкость магмы в нем 104, 105, 106 Пас. Рассмотрен начальный этап деятельности канала длительностью 10 лет. Выяснены условия замерзания канала (останавливающаяся экструзия), возникновения квазистационарного режима (устойчивое истечение), течения с интенсивным прогревом стенок.

A mathematical model and a method of computation are developed for the flow of magma with temperature-dependent viscosity in the conduit of a volcano. An example involves the following parameters: conduit radius is 10 m, depth to the magma chamber is 30 km, the overpressure, magma temperature and viscosity in the chamber are 20 bars, 1300° C, and 104, Ю5, 106Pa s, respectively. The initial phase of conduit operation lasting less than 10 years is considered. Conditions are determined under which the conduit freezes (stopping the extrusion), a quasistationary behavior sets in (steady flow), and the flow heats the conduit wall intensively.
Михайлюкова П.Г., Тутубалина О.В., Мельников Д.В., Зеленин Е.А. Количественная оценка параметров Трещинного Толбачинского извержения им. 50-летия ИВиС ДВО РАН и динамики вулканогенного рельефа на основе данных дистанционного зондирования // Современные проблемы дистанционного зондирования Земли из космоса. 2014. Т. 11. № 4. С. 351-359.    Annotation
Статья представляет результаты исследования Трещинного Толбачинского извержения им. 50-летия ИВиС ДВО РАН (ТТИ-50) 2012-2013 гг. по данным дистанционного зондирования.
Нами оценены количественные характеристики ТТИ-50: величины вертикальных смещений, площадь лавовых полей, их мощность и объем. Значения вертикальных смещений оценивались по серии радиоинтерферометрических пар для зоны извержения. Пары снимков соответствуют заключительной фазе извержения, когда величины смещения были небольшими. Вертикальные смещения рассчитаны для участков лавовых полей, значение когерентности которых превышает 0,4. Полученная серия значений вертикальных смещений отражает преимущественно процесс остывания лавы, для которого характерны просадки поверхности. Максимальные величины смещений составили 27 см за 24 дня.
Вычисление мощности лавовых полей выполнялось на основе анализа разновременных ЦМР. Высотные профили, измеренные геодезическими приемниками GPS в ходе полевых работ в августе 2013 года, были использованы для оценки точности ЦМР: общедоступных SRTM, SRTM-X, ASTER GDEM и ЦМР, построенной ИТЦ СКАНЭКС по двум оптическим стереопарам SPOT 6 (от 18.07.2013 и 11.10.2013). Среднеквадратическая погрешность определения абсолютных высот по ЦМР SRTM-X и SPOT6, по сравнению с данными наземных съемок, не превышает 5 м. Это делает возможным оценку мощности лавовых потоков по разности высот SRTM-X и SPOT6. ЦМР SPOT6 за две даты использовались совместно для исключения ошибок, связанных с облачностью и свежевыпавшим снегом. Максимальные значения мощности превышают 80 м. Вычисленный объем извержения - 0,521±0.25 км3.

This paper presents results of study of the 2012-2013 Tolbachik fissure eruption on the basis of remote sensing
techniques.
We have calculated values of vertical displacements, lava thickness and the volume of the erupted lava. Values of
vertical displacements were estimated using a series of
radar interferometric pairs for the Tolbachik eruption zone.
These pairs correspond to the concluding phase of the erupti
on, when vertical displacements were relatively small.
Vertical displacements were calculated for parts of lava fields with coherence value over 0,4. The obtained values of
vertical displacement are typical for subsidence caused by cooling lava flows. The maximum value of subsidence is
27 cm for 24 days. The calculation of lava thickness was based on comparison of multitemporal DEMs. Height profiles measured by geodetic GPS receivers during fieldwork in August 2013 were used to estimate the quality of DEMs, derived from satellite imagery: freely available SRTM, SRTM-X, ASTER GDEM and the DEMs calculated at RDC ScanEx from two stereopairs of SPOT6 images (of 18.07.2013 and 11.10.2013). The RMS error for heights of SRTM-X and
SPOT 6 in relation to GPS data is within ±5 m. This enables to estimate the total thickness of new lava fields on the
basis of height differences between SRTM-X and SPOT 6 DEMs. Both SPOT 6 DEMs were used together to eliminate errors caused by clouds and snow. The maximum lava thickness is over 80 m. The volume of the erupted lava is 0,521±0,25 km3.
Моисеенко К.Б., Малик Н.А. Численное решение обратной задачи восстановления суммарной изверженной массы вулканического пепла и ее распределения по высотам в эруптивном облаке // Вестник КРАУНЦ. Серия: Науки о Земле. 2015. Вып. 25. № 1. С. 79-86.    Annotation
Приведен алгоритм восстановления параметров пепловых выбросов – суммарной массы и ее распределения по высотам – при эксплозивных извержениях. Решение обратной задачи строится на основе метода множественной регрессии, при минимальной априорной информации о характере эксплозивного процесса. В качестве примера, рассмотрено сильное эксплозивное событие на вулкане Безымянный 24.12.2006 г., для которого распределение массы пеплового выброса по высотам, согласно расчетам, частично контролировалось выносом пеплового материала в облаках пирокластических потоков. Данная особенность проявилась в характерном двухмодальном распределении массы выброса с максимумами на высотах средней тропосферы и нижней стратосферы.

The article provides an algorithm for recovery of parameters of ash emissions (total volume and its height distribution) during explosive eruptions. The solution for the corresponding inverse task uses a multiple regression approach with minimal a prior information on the eruption dynamics. As an example, we consider a strong explosive event at Bezymianny Volcano, Kamchatka, on 24.12.2006. The estimations showed that the mass distribution for ash emission with heights was partially controlled by the emission of ash material inside the clouds from pyroclastic flows. This peculiarity was revealed as a bimodal distribution of the emission mass with maximums at the mid tropospheric and low stratospheric heights.
Мороз Ю.Ф., Гонтовая Л.И. Глубинное строение района Авачинско-Корякской группы вулканов на Камчатке // Вулканология и сейсмология. 2003. № 4. С. 3-10.    Annotation
Приводятся результаты гравиметрических, сейсмических и электромагнитных исследований. Выявлены основные особенности глубинного строения района. Создана комплексная геолого-геофизическая модель земной коры под Авачинским вулканом. Она включает коровый магматический очаг на глубине ~15-25 км, перекрывающую его интрузию и периферический очаг под конусом вулкана на глубине ~0-2 км, а также зону, насыщенную жидкими флюидами в Авачинском грабене. Рассмотрены возможные геодинамические процессы, протекающие в земной коре в настоящее время. Важная роль отводится коровой проницаемой зоне, содержащей флюиды. Даны рекомендации для бурения глубокой скважины в районе Авачинского грабена с целью поисков геотермального месторождения.

Results are presented from gravity, seismic and electromagnetic studies. Main features of the deep structure of the area have been identified. A multidisciplinary geologic-geophysical model has been developed for the crust beneath Avacha Volcano. The model involves a crustal magma chamber at a depth of about 15-25 km, an intrusion that overlies it, and a peripheral chamber under the volcanic cone at 0-2 km depth, as well as a fluid-saturated zone in the Avacha Graben. We discuss possible geodynamic processes that are going on in the crust at present. Importance is attached to the fluid-containing crustal permeable zone. Recommendations are provided for drilling a deep well in the Avacha Graben area to search for a geothermal field.
Мороз Ю.Ф., Логинов В.А. Глубинная геоэлектрическая модель Авачинско-Корякской группы вулканов на Камчатке // Вестник КРАУНЦ. Серия: Науки о Земле. 2019. Вып. 42. № 2. С. 9-24. doi: 10.31431/1816-5524-2019-2-42-9-24.    Annotation
Рассмотрены методика и результаты магнитотеллурических зондирований в районе Авачинско-Корякской группы вулканов. Геоэлектрический разрез изучен в диапазоне периодов 0.0001 – 1000 с и более. Выполнено численное двумерное моделирование. Предварительно с помощью пробных моделей изучены возможные искажения кривых зондирований. По данным качественного анализа магнитотеллурических параметров определен характер геоэлектрических неоднородностей. В качестве основных приняты кривые по простиранию и вкрест простирания структур Камчатки. Продольные кривые, в меньшей степени подверженные влиянию берегового эффекта, использованы совместно с поперечными кривыми для создания геоэлектрической модели с помощью численного двумерного моделирования магнитотеллурического поля. Полученная геоэлектрическая модель содержит в верхней части разреза проводящий слой, связанный с осадочно-вулканогенным чехлом. Глубинная часть модели включает субвертикальные проводящие зоны, отражающие зону глубинных разломов. Рассматривается возможная природа выявленных аномалий и приближенная оценка пористости пород в проводящих зонах.

The article presents the methods and results of the magnetotelluric sounding within the Avacha-Koryaksky group of volcanoes. Geoelectrical section was studied within the period range from 0.0001 to 1000 seconds and above. The authors performed a numerical two-dimensional modeling. Initially, we used test models for possible distortions of curves. The analysis of the magnetotelluric parametres allowed us to characterize the geoelectrical inhomogenuities. Curves along the strike and across the strike were used as main curves. Since longitudinal curves are less prone to coast effect, they were used with transverse curves in order to create a geoelectrical model based on a 2D magnetotelluric field numerical modeling. The created geolectrical model has a conductive bed in the upper part of the section that is connected with an igneous-sedimentary cover. The deep part of the model includes near-vertical conductive zones, which denote a zone with deep faults. The paper describes possible nature of the revealed anomalies and provides rough estimation of rock porosity in the conductive zones.
Морозов А.И., Пийп Б.И. Действующие вулканы и горячие источники юга Камчатки // Вестник знания. 1938. № 6. С. 9-15.
Муравьев Я.Д. Ледники в кратере вулкана // Вопросы географии Камчатки. 1985. № 9. С. 145-146.
Муравьев Я.Д., Ашихмина Н.А., Овсянников А.А., Философова Т.М. Опыт изучения аэрозолей из кратерного ледника вулкана Плоский Толбачик (Камчатка) // Вулканология и сейсмология. 2002. № 6. С. 29-35.
Муравьев Я.Д., Егоров О.Н. Термальные источники в среднем течении р. Старый Семячик // Вопросы географии Камчатки. 1989. № 10. С. 131-135.





 

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2019. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Design: roman@kscnet.ru