Bibliography
Volcano:
Group by:  
Records: 2521
Taran Yuri, Zelenski Mikhail, Chaplygin Ilya, Malik Natalia, Campion Robin, Inguaggiato Salvatore, Pokrovsky Boris, Kalacheva Elena, Melnikov Dmitry, Kazahaya Ryunosuke, Fischer Tobias Gas Emissions From Volcanoes of the Kuril Island Arc (NW Pacific): Geochemistry and Fluxes // Geochemistry, Geophysics, Geosystems. 2018. Vol. 19. Vol. 6. P. 1859-1880. doi: 10.1029/2018GC007477.    Annotation
The Kuril Island arc extending for about 1,200 km from Kamchatka Peninsula to Hokkaido Island is a typical active subduction zone with ∼40 historically active subaerial volcanoes, some of which are persistently degassing. Seven Kurilian volcanoes (Ebeko, Sinarka, Kuntomintar, Chirinkotan, Pallas, Berg, and Kudryavy) on six islands (Paramushir, Shiashkotan, Chirinkotan, Ketoy, Urup, and Iturup) emit into the atmosphere > 90% of the total fumarolic gas of the arc. During the field campaigns in 2015–2017 direct sampling of fumaroles, MultiGas measurements of the fumarolic plumes and DOAS remote determinations of the SO2 flux were conducted on these volcanoes. Maximal temperatures of the fumaroles in 2015–2016 were 510°C (Ebeko), 440°C (Sinarka), 260°C (Kuntomintar), 720°C (Pallas), and 820°C (Kudryavy). The total SO2 flux (in metric tons per day) from fumarolic fields of the studied volcanoes was measured as ∼1,800 ± 300 t/d, and the CO2 flux is estimated as 1,250 ± 400 t/d. Geochemical characteristics of the sampled gases include δD and δ18O of fumarolic condensates, δ13C of CO2, δ34S of the total sulfur, ratios 3He/4He and 40Ar/36Ar, concentrations of the major gas species, and trace elements in the volcanic gas condensates. The mole ratios C/S are generally <1. All volcanoes of the arc, except the southernmost Mendeleev and Golovnin volcanoes on Kunashir Island, emit gases with 3He/4He values of >7RA (where RA is the atmospheric 3He/4He). The highest 3He/4He ratios of 8.3RA were measured in fumaroles of the Pallas volcano (Ketoy Island) in the middle of the arc.
Telling J., Flower V.J.B., Carn S.A. A multi-sensor satellite assessment of SO2 emissions from the 2012–13 eruption of Plosky Tolbachik volcano, Kamchatka // Journal of Volcanology and Geothermal Research. 2015. Vol. 307. P. 98 - 106. doi: 10.1016/j.jvolgeores.2015.07.010.    Annotation
Abstract Prolonged basaltic effusive eruptions at high latitudes can have significant atmospheric and environmental impacts, but can be challenging to observe in winter conditions. Here, we use multi-sensor satellite data to assess sulfur dioxide (SO2) emissions from the 2012–2013 eruption of Plosky Tolbachik volcano (Kamchatka), which lasted ~ 9–10 months and erupted ~ 0.55 km3 DRE. Observations from the Ozone Monitoring Instrument (OMI), the Ozone Mapping and Profiler Suite (OMPS), the Atmospheric Infrared Sounder (AIRS), and the Moderate Resolution Imaging Spectroradiometer (MODIS) are used to evaluate volcanic activity, SO2 emissions and heat flux associated with the effusion of lava flows. Gaps in the primary OMI SO2 time-series dataset occurred due to instrument limitations and adverse meteorological conditions. Four methods were tested to assess how efficiently they could fill these data gaps and improve estimates of total SO2 emissions. When available, using data from other {SO2} observing instruments was the most comprehensive way to address these data gaps. Satellite measurements yield a total SO2 loading of ~ 200 kt SO2 during the 10-month Plosky Tolbachik eruption, although actual SO2 emissions may have been greater. Based on the satellite SO2 measurements, the Fast Fourier Transform (FFT) multi-taper method (MTM) was used to analyze cyclical behavior in the complete data series and a 55-day cycle potentially attributable to the eruptive behavior of Plosky Tolbachik during the 2012 – 2013 eruption was identified.
Tibaldi Alessandro, Corazzato Claudia, Kozhurin Andrey, Lagmay Alfredo F.M., Pasquarè Federico A., Ponomareva Vera V., Rust Derek, Tormey Daniel, Vezzoli Luigina Influence of substrate tectonic heritage on the evolution of composite volcanoes: Predicting sites of flank eruption, lateral collapse, and erosion // Global and Planetary Change. 2008. Vol. 61. № 3-4. P. 151-174. doi:10.1016/j.gloplacha.2007.08.014.    Annotation
This paper aims to aid understanding of the complicated interplay between construction and destruction of volcanoes, with an emphasis on the role of substrate tectonic heritage in controlling magma conduit geometry, lateral collapse, landslides, and preferential erosion pathways. The influence of basement structure on the development of six composite volcanoes located in different geodynamic/geological environments is described: Stromboli (Italy), in an island arc extensional tectonic setting, Ollagüe (Bolivia–Chile) in a cordilleran extensional setting, Kizimen (Russia) in a transtensional setting, Pinatubo (Philippines) in a transcurrent setting, Planchon (Chile) in a compressional cordilleran setting, and Mt. Etna (Italy) in a complex tectonic boundary setting. Analogue and numerical modelling results are used to enhance understanding of processes exemplified by these volcanic centres. We provide a comprehensive overview of this topic by considering a great deal of relevant, recently published studies and combine these with the presentation of new results, in order to contribute to the discussion on substrate tectonics and its control on volcano evolution. The results show that magma conduits in volcanic rift zones can be geometrically controlled by the regional tectonic stress field. Rift zones produce a lateral magma push that controls the direction of lateral collapse and can also trigger collapse. Once lateral collapse occurs, the resulting debuttressing produces a reorganization of the shallow-level magma migration pathways towards the collapse depression. Subsequent landslides and erosion tend to localize along rift zones. If a zone of weakness underlies a volcano, long-term creep can occur, deforming a large sector of the cone. This deformation can trigger landslides that propagate along the destabilized flank axis. In the absence of a rift zone, normal and transcurrent faults propagating from the substrate through the volcano can induce flank instability in directions respectively perpendicular and oblique to fault strike. This destabilization can evolve to lateral collapse with triggering mechanisms such as seismic activity or magmatic intrusion.
Tokarev P.I. Dynamics and Large Deformations of Volcanoes // Volcanology and Seismology. 1991. Vol. 12. № 2. P. 241-259.
Tokarev P.I. Prediction of the Klyuchevskoi Parasitic Eruption in March 1983 // Volcanology and Seismology. 1983. № 5. P. 491-496.
Tokarev P.I. The March - June 1984 Eruption of Klyuchevskoi and its Present State as Estimated from Original Observations // Volcanology and Seismology. 1988. Vol. 7. № 1. P. 143-148.
Tokarev P.I. Volcanic Explosions. On the concept of "Volcanic Explosion" // Volcanology and Seismology. 1983. № 3. P. 315-322.
Tolstykh M.L., Naumov V.B., Gavrilenko M.G., Ozerov A.Yu., Kononkova N.N. Chemical composition, volatile components, and trace elements in the melts of the Gorely volcanic center, southern Kamchatka: Evidence from inclusions in minerals // Geochemistry International. 2012. Vol. 50. № 6. P. 522-550. doi:10.1134/S0016702912060079.
Tolstykh M.L., Naumov V.B., Ozerov A.Yu., Kononkova N.N. Composition of Magmas of the 1996 Eruption at the Karymskii Volcanic Center, Kamchatka: Evidence from Melt Inclusions // Geochemistry International. 2001. Vol. 39. № 5. P. 447-458.
Torsvik T., Paris R., Didenkulova I., Pelinovsky E., Belousov A., Belousova M. Numerical simulation of a tsunami event during the 1996 volcanic eruption in Karymskoye lake, Kamchatka, Russia // Natural Hazards and Earth System Science. 2010. Vol. 10. № 11. P. 2359-2369. doi:10.5194/nhess-10-2359-2010.