Group by:  
Records: 2355
Ozerov A.Yu. Gas regime defining the mechanism of periodic lava fountaining of basaltic volcanoes (experimental modeling) // Commission on the chemistry of volcanic gases (CCVG) - IAVCEI. 11th Gas Workshop, Kamchatka, Russia. 1-10 September 2011. 2011. P. 35
Ozerov A.Yu. The mechanism of basaltic explosions: Experimental modeling // Journal of Volcanology and Seismology. 2010. Vol. 4. № 5. P. 295-309. doi: 10.1134/S0742046310050015.    Annotation
An instrument package for simulating basaltic eruptions (IPSBE) with a height of 18 m has been developed for investigating the processes that occur during Strombolian eruptions. The device follows the geometrical ratio between the actual plumbing system of a volcano, with the ratio of conduit diameter to conduit height being 1 to 1000. For the first time in physical modeling studies, we created conditions in which a moving gassaturated model liquid enters the conduit; this enabled us to study bubble nucleation, expansion, and coalescence, the generation and transformation of gas structures, and the kinetic features shown by the evolution of the gas phase. These experiments revealed a novel (previously unknown) flow pattern of two phase mixtures in a vertical column, viz., a cluster flow that involves the regular alternation of compact clusters of gas bubbles that are separated by a fluid that does not involve a free gas phase. It is shown that the liquid, bubble, cluster, and slug flow patterns are mutually transformed under certain conditions; they are polymorphous modifications of a gassaturated liquid moving in a vertical pipe. The data thus acquired suggested a new model for the gas–liquid movement of a magma melt in a conduit: depending on the type of gas–liquid flow behavior at the vent, the crater will exhibit different types of explosive activity, including actual explosions.
Ozerov A.Yu., Ariskin A.A., Barmina G.S. The Problem of Genetic Relations between High-Aluminous and High-Magnesian Basalts of the Klyuchevskoi Volcano, Kamchatka // Transactions (Doklady) of the Russian Academy of Sciences / Earth Science Sections. 1996. Vol. 350. № 7. P. 1127-1130.
Ozerov A.Yu., Ariskin A.A., Kyle Ph., Bogoyavlenskaya G.E., Karpenko S.F. Petrological–Geochemical Model for Genetic Relationships between Basaltic and Andesitic Magmatism of Klyuchevskoi and Bezymyannyi Volcanoes, Kamchatka // Petrology. 1997. Vol. 5. № 6. P. 550–569
Ozerov A.Yu., Firstov P.P., Gavrilov V.A. Periodicities in the dynamics of eruptions of Klyuchevskoi Volcano, Kamchatka / Volcanism and Subduction: The Kamchatka Region. Geophysical Monograph Series. Washington, D. C.: American Geophysical Union. 2007. Vol. 172. P. 283-291.    Annotation
Detailed studies of volcanic tremor envelopes with frequencies ranging from 5.5⋅10-6 to 2.5⋅10-2 Hz (50 hrs - 40 sec), recorded during the Klyuchevskoi volcano eruptions of 1983 and 1984, revealed five major frequencies: 1.1⋅10-2 Hz (T1 = 1 min 34 sec), 2.5⋅10-3 Hz (T2 = 6 min 10 sec), 4.2⋅10-4 Hz (T3 = 40 min), 5.1⋅10-5 Hz (T4 = 5 hrs 30 min), 7.7⋅10-6 Hz (T5 = 36 hrs), as well as superpositions of their harmonics. In the 1993 eruption, fluctuations in the volcanic tremor envelopes have frequencies of TI = 2 hrs 48 min and TII = 6 hrs 12 min, which correspond to periodicities in the dynamics of eruptions identified by visual observations since 1932. The distribution of peak amplitudes has been found to vary in relation to eruption intensity—increasing eruption strength correlates with an increase in the amplitude of low frequency peaks, and vice versa. It is concluded that volcanic tremor allows monitoring of eruption dynamics. Possible reasons for the occurrence of periodicities are discussed, but a comprehensive model for this phenomenon has not yet been developed.
Ozerov A.Yu., Girina O.A., Zharinov N.A., Belousov A.B., Demyanchuk Yu.V. Eruptions in the Northern Group of Volcanoes, in Kamchatka, during the Early 21st Century // Journal of Volcanology and Seismology. 2020. Vol. 14. P. 1-17.    Annotation
The early 21st century saw increased eruption activity of major volcanoes in the Northern Group of Kamchatka, namely, Sheveluch, Klyuchevskoy, Bezymianny, and the Tolbachik Fissure Zone. The growth of an extrusive dome on Sheveluch andesitic volcano has occurred, with the dome reaching a height of 600 m after 38 years of nearly uninterrupted eruption activity. An 8-year period of relative quiet was followed by ten summit eruptions and two lateral vent openings on the Klyuchevskoy basaltic volcano. Explosive–effusive eruptions were observed nearly every year on the Bezymianny andesitic volcano. A 36-year quiet period gave way to a new eruption in the Tolbachik regional fissure zone.
Ozerov A.Yu., Gordeev E.I., Dvigalo V.N. Modern volcanism of Kamchatka, Russia // Proceeding of the 3-rd International symposium. Jeju Volcanological Institute. Korea. 2005. С. 33-41.
Ozerov A.Yu., Karpov G.A., Droznin V.A., Dvigalo V.N., Demyanchuk Yu.V., Ivanov V.V., Belousov A.B., Firstov P.P., Gavrilov V.A., Yaschuk V.V., Okrugina A.I. The September 7 - October 2, 1994 Eruption of Klyuchevskoi Volcano, Kamchatka // Volcanology and Seismology. 1997. № 18. P. 501-516.
Ozerov A.Yu., Khubunaya S.A. High-magnesian olivines and pyroxens as a criterion of petrogenetic relationship of calc-alkaline magmas from Klyuchevskoy volcano // Abstracts of 29th International Geological Congress. Kyoto: 1992. P. 639
Ozerov A.Yu., Konov A.S. Regularities in the dynamics of the Klyuchevskoy volcano eruptions // Proceeding Kagoshima International Conference on Volcanoes. Japan: 1988. P. 63-65.

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2021. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal from your own website.