Главная Библиография
 
 Библиография
Вулкан: Расширенный поиск

Количество записей: 1821
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
Мельников Д.В., Маневич А.Г., Гирина О.А. Количественные характеристики активности вулканов Камчатки по данным веб-камер // Тезисы докладов XVIII региональной конференции, посвященной Дню вулканолога, 30 марта - 1 апреля 2015 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2015. С. 92-94.
Мельников Д.В., Маневич А.Г., Гирина О.А. О точности определения высоты пепловых шлейфов и облаков с помощью спутниковых данных // Тринадцатая Всероссийская открытая конференция "Современные проблемы дистанционного зондирования Земли из космоса". Материалы. Москва: ИКИ РАН. 2015.
Мельников Д.В., Маневич А.Г., Гирина О.А. Эксплозивно-эффузивное извержение вулкана Ключевской в 2016 г. по спутниковым данным MODIS // Сборник тезисов докладов. Четырнадцатая Всероссийская Открытая конференция «Современные проблемы дистанционного зондирования Земли из космоса». М.: ИКИ РАН. 2016. С. 318
Мельников Д.В., Маневич А.Г., Гирина О.А. Эксплозивно-эффузивное извержение вулкана Ключевской в 2016 году по спутниковым данным MODIS // Четырнадцатая Всероссийская Открытая конференция «Современные проблемы дистанционного зондирования Земли из космоса». 14-18 ноября 2016, Институт космических исследований РАН, Москва. 2016. С. 318    Аннотация
В настоящее время спутниковые данные интенсивно используются для обнаружения и количественной оценки термальных аномалий на действующих вулканах (Trifonov et al., 2016; Melnikov, Volynets, 2015; Ефремов и др., 2012). Для задач оперативного мониторинга успешно используются данные инструмента MODIS, установленного на борту ИСЗ Terra и Aqua, которые позволяют обнаруживать и проводить количественную оценку вулканической активности в условиях различных геотектонических обстановок (Wright et al., 2004; Coppola et al., 2016). Существуют различные алгоритмы обработки этих данных для обнаружения термальных аномалий. Одним из них является алгоритм глобального мониторинга вулканической активности - MODVOLC (Flynn et al., 2002; Wright et al., 2002). Он основан на поиске высокотемпературных аномалий в 21 (4 мкм) и 32 (12 мкм) каналах MODIS. Для этого рассчитывается нормализованный тепловой индекс (НТИ), как соотношение между разницей и суммой указанных яркостей. Порогом обнаружения термальных аномалий является значение НТИ=> -0.8 для ночных снимков MODIS.
В Институте вулканологии и сейсмологии ДВО РАН в 2015 году установлена приёмная станция УниСкан-36 (Сканэкс), которая позволяет производить приём и обработку спутниковых данных MODIS (от 4 до 8 снимков в сутки) в режиме реального времени. Авторами реализован алгоритм автоматической обработки снимков MODIS для обнаружения и количественной оценки термальных аномалий для действующих вулканов Камчатки и Курильских островов. Алгоритм позволяет: 1) для каждого действующего вулкана производится автоматический поиск тепловых аномалий на основе НТИ, 2) для каждого пикселя тепловых аномалий, имеющих пороговое значение НТИ=> -0.8 определяется мощность излучения (Wooster et al., 2003), 3) согласно определённой мощности излучения оценивается мгновенный расход лавы согласно методу D.Coppola (Coppola et al., 2013). Данные по зафиксированной максимальной, минимальной, фоновой температуре, количеству пикселей тепловых аномалий по каждому вулкану заносятся в базу данных.
Согласно описанному алгоритму, производится оперативный мониторинг извержения Ключевского вулкана, начавшегося в апреле 2016 года. Применение алгоритма позволило отметить начало извержения в виде стромболианской активности в кратере вулкана. Для этого периода характерна средняя мощность излучения 30-50 МВатт и расход лавы 0,6 м3/сек. 23 апреля произошло мощное эксплозивное событие, которое привело к частичному разрушению привершинной области восточного склона вулкана (верхняя часть Апахончичского желоба). По спутниковым снимкам 24-27 апреля было зафиксировано резкое увеличение мощности излучения до 500 МВатт и расхода лавы 5 м3/сек, что свидетельствовало о начале излияния лавового потока по восточному склону вулкана. Интенсивность излияния лавовых потоков начала повышаться с начала июня 2016 года, достигнув максимальных значений мощности излучения в 1500-1800 МВатт в июле-сентябре, средний расход лавы составил 4-6 м3/сек, при максимальных значениях 15-20 м3/сек. На сегодняшний день 30 сентября, извержение Ключевского вулкана продолжается, предварительный объём эффузивного материала составляет 0,05 км3 (±50%).
Работа выполнена при поддержке Российского научного фонда (проект № 16-17-00042).
Меняйлов А.А. Вулкан Шевелуч - его геологическое строение, состав и извержения // Тр. лаб. вулканологии АН СССР. / Отв. ред. Влодавец В.И. 1955. Вып. 9. 264 с.
Меняйлов А.А. Вулканы Харчинских гор // Труды Лаборатории вулканологии и Камчатской вулканол. ст. 1949. Вып. 6. С. 53-61.
Меняйлов А.А. Динамика и механизм извержений Ключевского вулкана в 1937 – 1938 гг. // Труды Лаборатории вулканологии и Камчатской вулканол. ст. 1947. № 4. С. 3-91.
Меняйлов А.А. Извержение вулкана Авачи в 1938 г. // Бюллетень вулканологических станций. 1939. № 6. С. 3-20.
Меняйлов А.А. Извержение вулкана Шивелуч в 1944-1948 гг. // Бюллетень вулканологических станций. 1953. № 18. С. 3-24.
Меняйлов А.А. Основные этапы развития вулкана Шивелуча // Труды Лаборатории вулканологии АН СССР. 1954. № 8. С. 115-124.
Меняйлов А.А., Набоко С.И. Потухшие вулканы Верхне-Еловского района на Камчатке // Труды Камчатской вулканологической станции. 1948. № 2. С. 24-65.
Меняйлов И.А. Зависимость состава вулканических газов от состояния вулканической активности и геохимический прогноз извержений // Бюллетень вулканологических станций. 1976. № 52. С. 42-48.
Меняйлов И.А. Фумарольные газы пирокластических потоков вулканов Безымянного и Катмаи // Вулканы и извержения. 1969. С. 78-81.
Меняйлов И.А., Никитина Л.П., Гусева Р.В., Шапарь В.Н. Результаты отбора и анализа вулканических газов на Толбачинском трещинном извержении в 1975 г. // Доклады АН СССР. 1976. Т. 230. № 2. С. 440-442.
Меняйлов И.А., Никитина Л.П., Пилипенко В.П., Шапарь В.Н. Состав газов и температура кратерных фумарол вулкана Момотомбо (Никарагуа) в марте-мае 1983 г. // Вулканология и сейсмология. 1987. № 2. С. 25-33.
Меняйлов И.А., Никитина Л.П., Шапарь В.Н. Геохимические особенности вулканических газов // Большое трещинное Толбачинское извержение. Камчатка. 1975-1976. 1984. С. 285-309.
http://repo.kscnet.ru/541/ [связанный ресурс]
Меняйлов И.А., Никитина Л.П., Шапарь В.Н. Геохимические особенности фумарольных газов на различных стадиях активности вулканов Тихоокеанского вулканического пояса // Вулканология и сейсмология. 1991. № 1. С. 79-92.    Аннотация
Пробы вулканических газов отбирались в течение 1988 г. по единой методике из фумарол вулканов в пределах обрамления Тихого океана: Момотомбо (Никарагуа), Белый Остров и Рауль (Новая Зеландия), Шивелуч (Камчатка), Эбеко (Курильские острова). Температура газов фумарол варьировала в пределах 92-882° С, что позволило выделить по составу несколько типов фумарол: магматические - высокотемпературные (850° С), срсднетемпературные (300-500° С), низкотемпературные (100°-120° С), водно-углекислые низкотемпературные (100° С). Независимо от состояния активности вулканов, их положения и стадии эволюции, а также при близком атомном составе молекулярные отношения вулканических газов контролируются минеральными буферами парциального давления кислорода. Работа представляет интерес для поисков признаков извержений в изменении состава газов без заметных изменений температуры фумарол

During 1988 gas samples were collected by one technique from the following volcanic fumaroles within the Pacific ocean ring: Momotombo (Nikaragua), the White Island and Raul (New Zealand), Sheveluch (Kamchatka) and Ebeko (the Ku-rile Islands). Gas temperature of fumaroles varied between 92° and 882° C. In this connection, oseveral types of fumaroles were distinguished: magmatic - high temperature (850° C), .mean temperature (300-500° C), low temperature (100-120° C), and aqueous carbon dioxide low temperature (100°C). Independently of the state of activity, location and evolution stage of volcanoes, the atomic composition beeing similar, the molecular ratios of volcanic gases are controlled by mineral buffers of partial oxygen pressure!. The paper is of interest in searching for eruption precur-sors in the change of gas composition when visible variations of fumarole temperature are lacking
Меняйлов И.А., Никитина Л.П., Шапарь В.Н. Изменение химического состава и изотопных отношений углерода СО2 фумарол активных вулканов и геохимический прогноз извержений // Вулканизм и связанные с ним процессы. Тезисы докладов VI Всесоюзного вулканологического совещания. Петропавловск-Камчатский, сентябрь 1985 г. Петропавловск-Камчатский: ИВ ДВНЦ АН СССР. 1985. Вып. 1. С. 222-224.
Меняйлов И.А., Никитина Л.П., Шапарь В.Н. Особенности химического и изотопного состава фумарольных газов в межэруптивный период деятельности вулкана Эбеко // Вулканология и сейсмология. 1988. № 4. С. 21-36.
Меняйлов И.А., Никитина Л.П., Шапарь В.Н. Состояние активных вулканов Никарагуа в январе 1985 г. по данным о температуре и составе фумарольных газов // Вулканология и сейсмология. 1986. № 4. С. 43-48.





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2017. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru