Главная Библиография
 
 Библиография
Вулкан: Расширенный поиск

Количество записей: 1833
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
Gorshkov G.S. Kamchatka Valley of Ten Thousand Smokes // Bulletin of the Volcanological Society of Japan. 1959. V. 3. V. 2. № 2. P. 154-156.
Gorshkov G.S. Kurile Islands // Catalog of Active Volcanoes of the World and Solfatara Fields. 1958. P. 1-99.
Gorshkov G.S. On some theoretical problems of Volcanology // Bulletin of Volcanology. 1958. V. 19. № 1. P. 103-114. doi: 10.1007/BF02596600.
Gorshkov G.S. On the Relation of Volcanism and the Upper Mantle // Bulletin Volcanologique. 1965. V. 28. P. 159-167.
Gorshkov G.S. On the classification and terminology of Pelee and Katmai type eruptions // Bulletin of Volcanology. 1962. V. 24. P. 155-165.
Gorshkov G.S. On the origin of ignimbrites in relation to the study of recent eruptions // Bulletin of Volcanology. 1963. V. 25. P. 33-37.
Gorshkov G.S. On the petrochemistry of volcanic rocks in connection with the formation of island arcs // Publ. du Bureau Central Sasmol Intern. 1961. V. A. № 22.
Gorshkov G.S. On the relation between seismic and volcanic phenomena and the energy balance of the Bezymianny volcano eruption // Proc. 9th Pacific Sci. Congr. 1963. V. 12.
Gorshkov G.S. Petrochemical features of volcanism in relation to the types of the Earth's crust // The Crust of the Pacific Basin // Geoph. Monograph. 1962. V. 6. P. 110-115.
Gorshkov G.S. Petrochemistry of volcanic rocks in relation to the formation of island arcs // Annali di Geofisica. 1961. V. 14. № 2.
Gorshkov G.S. Petrochemistry of volcanic rocks in the Kurile Islands arc with some generalizations on volcanism // The Western Pacific: Island Arcs, Marginal Seas, Geochemistry. 1973. P. 459-467.
Gorshkov G.S. Progress and problems in volcanology // Tectonophysics. 1972. V. 13. № 1-4. P. 123-140.
Gorshkov G.S. Some result of seismometric investigations at the Kamchatka Volcanological Station // Bulletin Volcanologique, organe de IAV. 1960. V. 23. V. 2. P. 121-128.
Gorshkov G.S. Two types of alkaline rocks - two types of upper mantle // Bulletin of Volcanology. 1969. V. 33. № 4. P. 1186-1198.
Gorshkov G.S. Volcanic zone of the Kurile Islands // Proc. 9th Pacific Sci. Congr. 1961. V. 12.
Gorshkov G.S. Volcanism and the Upper Mantle. Investigations in the Kurile Island Arc. 1970. 385 p.    Аннотация
The present volume seems to me to be a particularly im­ portant one for several reasons. Not least among these is the fact that it summarizes the work of two decades by G. S. Gorshkov, one of the world's leading volcanologists. In addition, it is the first general work of this length on the volcanism of what might be called a "narrow" island arc, a relatively simple megastructure as com­ pared with the "wide" arcs such as Japan and Indonesia. Finally, in this volume Gorshkov has summarized and cited extensive evi­ dence for his general ideas on the relation between volcanism and the earth's crust and mantle. A few potentially troublesome items should be noted here. In the translation the Russian terms "suite" and "series" have been retained, though for American readers these might better have been translated as "formation" and "group. " In almost all cases Russian place names have simply been transliterated rather than translated (e. g. , "Yuzhnyi Isthmus" rather than "South Isthmus"); in a few cases the English equivalent has been given in brackets where this is essential to the understanding of the author's com­ ments. The adjectives have retained their Russian case endings in the process (masculine -yi or -ii, feminine -aya or -'ya, neuter -oe) and this may occasionally lead to some slight confusion, for example, when the author calls a given feature Severnyi Volcano at one point and Severnaya Mountain at another.
Gorshkov G.S., Dubik Y.M. Gigantic directed blast at Shiveluch volcano (Kamchatka) // Bulletin Volcanologique. 1970. V. 34. P. 261-288.
Grapenthin Ronni, Freymueller Jeffrey T., Serovetnikov Sergey S. Surface deformation of Bezymianny Volcano, Kamchatka, recorded by GPS: The eruptions from 2005 to 2010 and long-term, long-wavelength subsidence // Journal of Volcanology and Geothermal Research. 2013. V. 263. P. 58-74. doi:10.1016/j.jvolgeores.2012.11.012.    Аннотация
Since Bezymianny Volcano resumed its activity in 1956, eruptions have been frequent; recently with up to 1–2 explosive events per year. To investigate deformation related to this activity we installed a GPS network of 8 continuous and 6 campaign stations around Bezymianny. The two striking observations for 2005–2010 are (1) rapid and continuous network-wide subsidence between 8 and 12 mm/yr, which appears to affect KAMNET stations more than 40 km away where we observe 4–5 mm/yr of subsidence, and (2) only the summit station BZ09 shows slight deviations from the average motion in the north component at times of eruptions.
The network-wide subsidence cannot be explained by tectonic deformation related to the build-up of interseismic strain due to subduction of the Pacific plate. A first order model of surface loading by eruptive products of the Kluchevskoy Group of Volcanoes also explains only a fraction of the subsidence. However, a deep sill at about 30 km under Kluchevskoy that constantly discharges material fits our observations well. The sill is constrained by deep seismicity which suggests 9.5 km width, 12.7 km length, and a 13° dip-angle to the south-east. We infer a closing rate of 0.22 m/yr, which implies a volume loss of 0.027 km3/yr (0.16 m/yr and 0.019 km3/yr considering surface loading). Additional stations in the near and far field are required to uniquely resolve the spatial extent and likely partitioning of this source.
We explain the eruption related deformation at BZ09 with a very shallow reservoir, likely within Bezymianny's edifice at a depth between 0.25 km and 1.5 km with a volume change of 1–4 × 10− 4 km3. Much of the material erupted at Bezymianny may be sourced from deeper mid-crustal reservoirs with co-eruptive volume changes at or below the detection limit of the GPS network. Installation of more sensitive instruments such as tiltmeters would allow resolving of subtle co-eruptive motion.
Gurenko A.A., Belousov A.B., Trumbull R.B., Sobolev A.V. Explosive basaltic volcanism of the Chikurachki Volcano (Kurile arc, Russia): Insights on pre-eruptive magmatic conditions and volatile budget revealed from phenocryst-hosted melt inclusions and groundmass glasses // Journal of Volcanology and Geothermal Research. 2005. V. 147. № 3-4. P. 203-232. doi:10.1016/j.jvolgeores.2005.04.002.
Gusev A.A., Ponomareva V.V., Braitseva O.A., Melekestsev I.V., Sulerzhitsky L.D. Great explosive eruptions on Kamchatka during the last 10,000 years: Self-similar irregularity of the output of volcanic products // Journal of Geophysical Research. 2003. V. 108. № B2. doi:10.1029/2001JB000312.    Аннотация
Temporal irregularity of the output of volcanic material is studied for the sequence of large (V ≥ 0.5 km3, N = 29) explosive eruptions on Kamchatka during the last 10,000 years. Informally, volcanic productivity looks episodic, and dates of eruptions cluster. To investigate the probable self-similar clustering behavior of eruption times, we determine correlation dimension Dc. For intervals between events 800 and 10,000 years, Dc ≈ 1 (no self-similar clustering). However, for shorter delays, Dc = 0.71, and the significance level for the hypothesis Dc < 1 is 2.5%. For the temporal structure of the output of volcanic products (i.e., for the sequence of variable-weight points), a self-similar “episodic” behavior holds over the entire range of delays 100–10,000 years, with Dc = 0.67 (Dc < 1 at 3.4% significance). This behavior is produced partly by the mentioned common clustering of event dates, and partly by another specific property of the event sequence, that we call “order clustering”. This kind of clustering is a property of a time-ordered list of eruptions, and is manifested as the tendency of the largest eruptions (as opposed to smaller ones) to be close neighbors in this list. Another statistical technique, of “rescaled range” (R/S), confirms these results. Similar but weaker-expressed behavior was also found for two other data sets: historical Kamchatka eruptions and acid layers in Greenland ice column. The episodic multiscaled mode of the output of volcanic material may be a characteristic property of a sequence of eruptions in an island arc, with important consequences for climate forcing by volcanic aerosol, and volcanic hazard.





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2017. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru