Библиография
Вулкан:
Группировать:  
Записей: 2735
Kirianov V.Yu., Egorova I.A., Litasova S.N. Volcanic ash on Bering Island (Commander Islands) and Kamchatkan Holocene Eruptions // Volcanology and Seismology. 1990. Vol. 8. № 6. P. 850-868.
Kirianov V.Yu., Melekestsev I.V., Andreev V.N., Ovsyannikov A.A. Reconstruction of the eruptive activity of Momotombo volcano (Nicaragua) to assess volcanic hazards // Kagoshima International Conference on Volcanoes: Proceedings of the International Conference on Volcanoes, Japan, Kagoshima, 19-23 July 1988. Kagoshima: Kagoshima Prefectural Government. 1988. P. 495-498.
Kirianov V.Yu., Neal C.A., Gordeev E.I., Miller T.P. The Kamchatkan Volcanic Eruption Response Team (KVERT) // USGS Fact Sheet. 2002. Vol. 064-02.
Kirianov V.Yu., Solovieva N.A. Lateral variations in ash composition due to Eolian differentiation // Volcanology and Seismology. 1991. Vol. 12. № 4. P. 431-442.
Kirsanov I.T. Acid volcanism and thermal manifestations in the area of Mutnovsky and Gorely volcanoes (Southern Kamchatka) // Bulletin Volcanologique. 1967. Vol. 30. Vol. 1. P. 139-151. 13 p. doi:10.1007/BF02597664.
Kiryukhin A. V., Bergal-Kuvikas Olga, Lemzikov M.V., Zhuravlev N. B. Magmatic system of the Klyuchevskoy volcano according to seismic data and their geomechanical interpretation // Journal of Mining Institute. 2023. № 263. P. 698-714.
Kiryukhin A.V., Bergal-Kuvikas Olga, Lemzikov M.V. Magmatic activity of Klyuchevskoy volcano triggering eruptions of Bezymianny volcano based on seismological and petrological data // Journal of Volcanology and Geothermal Research. 2023. doi: 10.1016/j.jvolgeores.2023.107892.
Kiryukhin A.V., Fedotov S.A., Kiryukhin P.A. Magmatic Systems and the Conditions for Hydrothermal Circulation at Depth in the Klyuchevskoi Volcanic Cluster as Inferred from Observations of Local Seismicity and Thermo-Hydrodynamic Simulation // Journal of Volcanology and Seismology. 2018. Vol. 12. № 4. P. 231-241. doi:10.1134/S0742046318040036.
   Аннотация
An analysis of local seismicity within the Klyuchevskoi Volcanic Cluster and Shiveluch Volcano for the period 2000–2017 revealed a sequence of plane-oriented earthquake clusters that are interpreted here as the emplacement of dikes and sills (magmatic fracking). The geometry of magma bodies reflects the geomechanical conditions in volcanic plumbing systems and at the bases of the volcanoes. Magmatic fracking within active magmatic plumbing systems results in the formation of permeable reservoirs whose vertical extent can reach 35 km (Klyuchevskoi) and can be as wide as 15 km across (Shiveluch), depending on the geomechanical condition of the host rocks. These reservoirs will be the arena of subsequent hydrothermal circulation, producing geothermal and ore fields, as well as hydrocarbon fields. TOUGH2-EOS1sc simulation tools were used to estimate the conditions for the formation of hydrothermal reservoirs at temperatures below 1200°С and pressures below 1000 bars.
Kiryukhin A.V., Fedotov S.A., Kiryukhin P.A., Chernykh E.V. Magmatic plumbing systems of the Koryakskii–Avacha Volcanic Cluster as inferred from observations of local seismicity and from the regime of adjacent thermal springs // Journal of Volcanology and Seismology. 2017. Vol. 11. № 5. P. 321-334. doi:10.1134/S0742046317050049.
   Аннотация
An analysis of local seismicity within the Avacha–Koryakskii Volcanic Cluster during the 2000–2016 period revealed a sequence of plane-oriented earthquake clusters that we interpret as a process of dike and sill emplacement. The highest magmatic activity occurred in timing with the 2008–2009 steam–gas eruption of Koryakskii Volcano, with magma injection moving afterwards into the cone of Avacha Volcano (2010–2016). The geometry of the magma bodies reflects the NF geomechanical conditions (tension and normal faults, Sv >SHmax >Shmin ) at the basement of Koryakskii Volcano dominated by vertical stresses Sv, with the maximum horizontal stress SHmax pointing north. A CFRAC simulation of magma injection into a fissure under conditions that are typical of those in the basement of Koryakskii Volcano (the angle of dip is 60о, the size is 2 × 2 km2, and the depth is –4 km abs.) showed that when the magma discharge is maintained at the level of 20000 kg/s during 24 hours the fissure separation increases to reach 0.3 m and the magma injection is accompanied by shear movements that occur at a rate as high as 2 × 10–3 m/s, thus corresponding to the conditions of local seismic events with Mw below 4.5. We are thus able to conclude that the use of planeoriented clusters of earthquakes for identification of magma emplacement events is a physically sound procedure. The August 2, 2011 seismicity increase in the area of the Izotovskii hot spring (7 km from the summit of Koryakskii Volcano), which is interpreted as the emplacement of a dike, has been confirmed by an increase in the spring temperature by 10–12°С during the period from October 2011 to July 2012.
Kochegura V.V., Zubov A.G. Paleomagnetic chronostratigraphy of young eruptive series // Abstracts: generation of major basalt types. August 15-22, 1982. Reykjavik, Island: IAVCEI-IAGC Scientific Assembly. 1982. Vol. 81.