Bogoyavlenskaya G.E., Girina O.A. Bezymianny volcano: 50 years of activity // Abstracts. 5rd Biennial Workshop on Subduction Processes emphasizing the Japan-Kurile-Kamchatka-Aleutian Arcs (JKASP-5). 2006. P. 129 doi: P 601.
Bogoyavlenskaya G.E., Girina O.A. Discriminations in Generation of pyroclastic deposit types from andesitic volcanoes of Kamchatka (in the Bezymianny volcano case) // IUGG. XXI General Assembly. Colorado. 1995. P. B 410
Bogoyavlenskaya G.E., Kirsanov I.T., Firstov P.P., Girina O.A. Bezymianny (Kamchatka). 1984-1985 eruptions and related pyroclastic deposits // SEAN Bulletin. 1986. № 4. P. 15-20.
Bogoyavlenskaya G.E., Naumov V.B., Tolstykh M.L., Ozerov A.Yu., Khubunaya S.A. Magma compositions of Bezymianny, Shiveluch and Karymsky volcanoes according to the data on study of glass inclusions (Kamchatka) // Abstracts of IAVCEI General Assembly, 18-22 July 2000. Bali, Indonesia. 2000. P. 87
Bogoyavlenskaya G.E., Ozerov A.Yu., Khubunaya S.A. The Klyuchevskoy Volcano Eruption in 1993 and 1994 and Its Activity During the Last Decade / IUGG XXI General Assembly, 1995, (Abstract VB11B-03). 1995. P. 410
Botcharnikov Roman E., Shmulovich Kirill I., Tkachenko Sergey I., Korzhinsky Mikhail A., Rybin Alexander V. Hydrogen isotope geochemistry and heat balance of a fumarolic system: Kudriavy volcano, Kuriles // Journal of Volcanology and Geothermal Research. 2003. Vol. 124. № 1-2. P. 45-66. doi:10.1016/S0377-0273(03)00043-X.
Annotation
The temperature and hydrogen isotope composition of the fumarolic gases have been studied at Kudriavy volcano, Kurile Islands, which is unique for investigating the processes of magma degassing because of the occurrence of numerous easily accessible fumaroles with a temperature range of 100–940°C. There are several local fumarolic fields with a total surface area of about 2600 m2 within the flattened crater of 200×600 m. Each fumarolic field is characterized by the occurrence of high- and low-temperature fumaroles with high gas discharges and steaming areas with lower temperatures. We have studied the thermal budget of the Kudriavy fumarolic system on the basis of the quantitative dependences of the hydrogen isotope ratio (D/H) and tritium concentration on the temperature of fumarolic gases and compared them with the calculated heat balance of mixing between hot magmatic gas and cold meteoric water. Hydrogen isotope composition (δD and 3H) shows a well expressed correlation with the gas temperature. Since D/H ratio and 3H are good indicators of water sources in volcanic areas, it suggests that the thermal budget of the fumarolic system is mostly controlled by the admixing of meteoric waters to magmatic gases. The convective mechanism of heat transfer in the hydrothermal system governs the maximum temperatures of local fumaroles and fumarolic fields. Low-temperature fumaroles at Kudriavy are thermally buffered by the boiling processes of meteoric waters in the mixing zone at pressures of 3–12 bar. These values may correspond to the hydrostatic pressure of water columns about 30–120 m in height in the volcanic edifice and hence to the depth of a mixing/boiling zone. Conductive heat transfer is governed by conductive heat exchange between gases and country rocks and appears to be responsible for the temperature distribution around a local fumarolic vent. The temperature and pressure of shallow degassing magma are estimated to be 1050°C and 2–3 bar, respectively. The length of the ‘main’ fumarolic gas conduit is estimated to be about 80 m from the linear correlation between maximal temperatures of fumarolic fields and distances to the highest-temperature ‘F-940’ fumarole. This value may correspond to the depth of an apical part of the magmatic chamber. The geometry of the crater zone at the Kudriavy summit and the model of convective gas cooling suggest different hydrostatic pressures in the hydrothermal system at the base of high- and low-temperature gas conduits. The depths of gas sources for low-temperature fumaroles are evaluated to be about 200 m at the periphery of the magma chamber.
Bouvet De Maisonneuve Caroline, Bergal-Kuvikas Olga, Phua Marcus, Bradley Kyle, Oalmann Jeffrey, Eisele Steffen, Forni Francesca, Fairuz Razali Nur, Rizaldi Putra, Rifai Hamdi Improving our understanding of Southeast Asian volcanic eruption histories, with an emphasis on Sumatra (Indonesia) // Crossing New Frontiers - Tephra Hunt in Transylvania 24-29 June 2018 in Romania, Europe. 2018.
Braitseva O.A., Bazanova L.I., Melekestsev I.V., Sulerzhitskiy L.D. Large holocene eruptions of Avacha Volcano, Kamchatka (7250-3700 14C years B.P.) // Volcanology and Seismology. 1998. Vol. 20. № 1. P. 1-27.
Annotation
Реконструированы хронология, динамика и параметры семи крупнейших извержений андезитового этапа 1Ав 7250-3700 14С-лет назад (л.н.) вулкана Авачинский на Камчатке, начавшегося после >2000-летнего периода относительного покоя. Описаны их ювенильные (андезитовая пирокластика) и резургентные продукты, оценен геолого-геоморфологический эффект. Самое мощное извержение (объем продуктов 8-10 км3) было 7250, последующие - 5700 (3*0,34 км3), 5600 (3*0,4 км3), 5500 (1,34 км3), 5000 (0,5 км3), 4500 (>1,1 км3), 4000 ( 0,6 км3) 14С-л.н. Среди изверженных продуктов преобладала тефра, пирокластические потоки имели место лишь при извержениях 5500 и 5000 л.н. Предполагается, что большинство извержений могло давать кислотные пики разной интенсивности в Гренландском ледниковом щите.
Braitseva O.A., Melekestsev I.V. Eruptive history of Karymsky volcano, Kamchatka, USSR, based on tephra stratigraphy and 14C dating // Bulletin of Volcanology. 1991. Vol. 53. № 3. P. 195-206. doi:10.1007/BF00301230.
Annotation
Eruptions of the active Karymsky stratovolcano began about 5300 (6100 C-14) B.P. from within a pre-existing caldera which formed 7700 C-14 B.P. As indicated by 32 C-14 determinations on buried soils and charcoal, the volcano has gone through two major cycles of activity, separated by a 2300 year period of repose. The first cycle can be divided into two stages (6100-5100 and 4300-2800 B.P.). The earlier stage began with especially intense eruptions of basaltic andesite to dacite. The later stage was characterized by moderate-strength eruptions of andesite. The second cycle, which is characterized by weak to moderate intermittent eruptions of andesite, started 500 B.P. and continues to the present. Eruptive patterns suggest that this cycle may continue for at least another 200 years with an eruptive character similar to that of the recent past.