Главная Библиография
 
 Библиография
Вулкан: Расширенный поиск

Количество записей: 1995
Страницы:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Фирстов П.П. Ударно-волновые и акустические эффекты в атмосфере при вулканических извержениях (обзор) // Вестник КРАУНЦ. Серия: Науки о Земле. 2009. Вып. 14. № 2. С. 100-117.    Аннотация
В статье дан обзор работ, посвященных ударно-волновым и акустическим эффектам в атмосфере от вулканических извержений. Кратко показано развитие направления «акустика вулканических извержений» (ави) и информативность волновых возмущений в атмосфере о динамике извержений и параметрах эксплозивного процесса. Приведено обоснование феноменологической классификации волновых возмущений в атмосфере от вулканических извержений.

The paper provides an overview of recent studies related to the shock-wave and acoustic effects in the atmosphere from volcanic eruptions. Brief description is given to the development of a new trend known as Acoustics from Volcanic Eruptions (AVE) and informational content of wave disturbances in the atmosphere regarding the dynamics of eruptions and parameters of explosive process. Wave disturbances in the atmosphere from volcanic eruptions were classified and presented in the paper to explain their unique nature.
Фирстов П.П., Жаринов Н.А., Белоусов А.Б. Наблюдение за активностью Ключевского вулкана в 1987 г. метеорологическим радиолокатором // Вулканология и сейсмология. 1990. Т. 4. С. 93-96.
Фирстов П.П., Лобачева М.А. Волновые возмущения в атмосфере, сопровождавшие извержение вулкана Камбальный (Камчатка) в 2017 г. // Вестник КРАУНЦ. Серия: Науки о Земле. 2018. Вып. 38. № 2. С. 45-58.    Аннотация
С 24 марта по 10 апреля 2017 г. происходило извержение вулкана Камбальный, который активизировался после почти полувекового покоя. В работе проанализированы волновые возмущения в атмосфере в виде цугов квазисинусоидальных колебаний с частотой 8 Гц («акустическое дрожание» (АД)), возникавшие в отдельные периоды извержения. Также рассмотрены три наиболее сильных сейсмических сигнала, зарегистрированных на начальном этапе извержения одновременно с АД, которое регистрировалось инфразвуковой станцией IS44, расположенной в 208 км к северо-западу от вулкана. Ближайшая сейсмическая станция «Паужетка» в 19 км от вулкана позволяла следить за сейсмической подготовкой извержения, которая была короткая по времени (2 суток) и слабая по энергетике (Кmax = 8.6). Отсутствие четко выраженных импульсных инфразвуковых сигналов, возникающих, как правило, при нестационарных процессах при эксплозивных извержениях, указывает на особый характер образования и истечения пепло-газовой смеси. Столь необычные проявления акустического излучения и сейсмической подготовки подтверждает предположение о том, что данное извержение следует отнести к гидротермальным.

On March 24, 2017 Kambalniy Volcano started to erupt after a 500-year-long period of rest. The eruption continued till April 10, 2017. The paper provides the analysis of atmospheric wave disturbances as wavetrains of quasi-sinusoidal oscillations with a frequency of 8 Hz ("acoustic tremor" or AT), which occurred at certain moments during the eruption. Besides, the paper describes 3 strongest seismic signals registered at the initial stages of the eruptions simultaneously with AT, which was registered using an infrasound station IS44 installed 208 km NW far from the volcano. The nearest "Pauzhetka" seismic station installed 19 far from the volcano allowed monitoring the seismic build-up, which was short (2 days) and weak (Кmax = 8.6). Lack of definite discrete infrasound signals, which are usually caused by non-stationary process during explosive eruptions, gives evidence for peculiar pattern of formation and effusion of ash-and-gas emissions. Such uncommon acoustic radiations and seismic build-up prove the presumption that this eruption should be classified as a hydrothermal event.
Фирстов П.П., Макаров Е.О., Максимов А.П., Чернев И.И. Отражение геодинамической обстановки северо-западного обрамления Тихого океана в динамике подпочвенного радона и в газовом составе теплоносителя Мутновской ГеоЭС // Вулканология и сейсмология. 2015. № 5. С. 43-49. doi: 10.7868/S0203030615050041.    Аннотация
Приводятся сведения об особенностях поведения временного ряда объемной активности радона за период 2000–2015 гг. в зоне влагонасыщения в районе Паратунского геотермального месторождения и временного ряда объемной доли молекулярного водорода газа теплоносителя скв. 016 Мутновского месторождения и их связи с сейсмичностью северо-западного обрамления Тихого океана. Сделан вывод, что длительные тренды в динамике объемной активности радона и высокая объемная доля молекулярного водорода в 2014 г. обусловлены изменением поля напряжений в зоне субдукции северо-западного фланга Тихого океана. Сделано предположение о возможности землетрясения с М > 7.5 в ближайшее 1.5 года. По данным академика С.А. Федотова, наиболее вероятный район этого события – от полуострова Шипунский до острова Шиашкотан (Средние Курилы)
Фирстов П.П., Максимов А.П., Чернев И.И. Динамика газового состава теплоносителя Мутновской ГЕОЭС в 2004 г. // Ползуновский вестник. 2006. № 2-1. С. 259-263.    Аннотация
Рассмотрена динамика газового состава теплоносителя Мутновской Геотермальной электростанции за период июнь - декабрь 2004 г. Выявлена тенденция снижения доли газа и понижения в нем отношения CO2/H2S.
Фирстов П.П., Махмудов Е.Р., Макаров Е.О., Фи Д. Комплексные геофизические наблюдения на вулкане Карымском (Камчатка) в августе 2012 г. // Вестник КРАУНЦ. Серия: Науки о Земле. 2012. Вып. 20. № 2. С. 48-58.    Аннотация
В статье приведены данные натурных наблюдений на вулкане Карымский в августе 2012 г., которые проведены комплексом аппаратуры, позволяющей регистрировать инфразвуковые колебания, аэродинамический шум, напряженность атмосферного электрического поля и объемную активность подпочвенного радона. Показано, что комплексные геофизические наблюдения являются достаточно информативными для мониторинга эксплозивной активности вулканов. На основе анализа волновых возмущений в атмосфере (аэродинамический шум, воздушные ударные волны) и сейсмических явлений, сопровождающих фрагментацию (разрушение) некоторого объема магмы, можно получить представления о физике эксплозивного процесса. Динамика объемной активности радона вблизи конуса вулкана Карымского коррелируется с активностью вулкана, что указывает на перспективность таких наблюдений.

The article presents new data from field observations at Karymskiy in August 2012, which were carried out by a complex of equipment allowing recording infrasonic fluctuations, aerodynamic noise and intensity of the atmospheric electric field and volumetric activity of underground radon. It is shown that integrated geophysical observations are quite informative to monitor explosive volcanic activity. The analysis of wave disturbances in the atmosphere (the aerodynamic noise, air shock waves) and seismic events accompanying the fragmentation of magma allow us to get an insight about the physics of the explosive process. The dynamics of volumetric activity of radon near to Karymskiy is correlated to the activity of the volcano, which indicates the perspective of such observations.
Фирстов П.П., Рашидов В.А., Мельникова А.В., Андреев В.И., Шульженкова В.Н. Ядерно-геофизические исследования в природном парке «Налычево» (Камчатка) // Вестник КРАУНЦ. Серия: Науки о Земле. 2011. Вып. 17. № 1. С. 91-101.    Аннотация
В 2009-2010 гг. в центральной части Природного парка «Налычево» были выполнены ядерно-геофизические исследования. В пределах термальной площадки «Котел» выявлены локальные аномалии γ-излучения со значением I ≥ 20-30 мкР/ч, вызванные повышенным содержанием радия, который откладывался в травертиновом покрове в зонах разгрузки термальных вод. Здесь зарегистрированы высокие значения объемной активности радона в почвенном воздухе, обусловленные, с одной стороны, наличием эманирующих коллекторов с повышенным содержанием радия в травертинах в местах бывших выходов термальных вод, и, с другой стороны, в зонах дизъюнктивных нарушений, которые, как правило, трассируются отрицательными формами рельефа. На техногенной термальной площадке «Грифон Иванова» формирование травертинового
покрова сопровождается отложением радийсодержащих минералов на расстоянии до первых сотен метров от источника, где фиксируются значения I ≥ 8 мкР/ч вдоль дренажной траншеи.

Over the period 2009-2010 the authors conducted a nuclear-geophysical investigation in Nalychevo Nature Park. Local anomalies with γ-radiation (I ≥ 20-30 µR/h) were detected within Kotel thermal area. The anomalies were caused by high radium concentration which deposited in travertine field of thermal spring’s sources. The authors also detected high levels of volumetric activity of radon in soil air caused, on one hand, by emanating collectors with high radium content in travertine within the zones of old sources of thermal springs and, on the other hand, by zones of fracture observed as negative landforms. Formation of travertine field at the non-natural thermal field «Grifon Ivanova» is accompanied by deposition of radium-bearing minerals within a few hundreds of meters away from the source with I ≥ 20-30 µR/h along the drain.
Фирстов П.П., Токарев П.И., Гусев Н.А. Динамика извержения и сейсмический режим вулкана Карымского в 1976 году. // Бюллетень вулканологических станций. 1978. № 55. С. 27-34.
Фирстов П.П., Шакирова А.А. Сейсмические явления, сопровождавшие извержение вулкана Кизимен в 2011 г. // Вестник КРАУНЦ. Серия: Науки о Земле. 2011. Вып. 18. № 2. С. 7-13.
Флеров Г.Б., Ананьев В.В., Пономарев Г.П. Минералогия пород вулканов Острый и Плоский Толбачиков, исторических извержений и первого этапа формирования зоны шлаковых конусов // Вулканизм и связанные с ним процессы. Материалы региональной конференции, посвященной Дню вулканолога, 27-28 марта 2014 г. Петропавловск-Камчатский: ИВиС ДВО РАН. 2014. С. 135-139.
Флеров Г.Б., Богоявленская Г.Е. Геолого-петрохимические особенности вулканизма Толбачинской региональной зоны шлаковых конусов // Геологические и геофизические данные о Большом трещинном Толбачинском извержении 1975-1976 гг.. 1978. С. 73-85.
Флеров Г.Б., Иванов Б.В., Андреев В.Н., Будников В.А., Меняйлов И.А. Вещественный состав продуктов извержения вулкана Алаид в 1981 г. // Вулканология и сейсмология. 1982. № 6. С. 28-43.
Флеров Г.Б., Чурикова Т.Г., Ананьев В.В. Вулканический массив Плоских Сопок: геология, петрохимия, минералогия и петрогенезис пород (Ключевская группа вулканов, Камчатка) // Вулканология и сейсмология. 2017. № 4. С. 30-47. doi: 10.7868/S0203030617040022.    Аннотация
Рассматриваются геологическая история и петрология крупного полигенного вулканического сооружения верхнеплейстоцен-голоценового времени. Этот долгоживущий вулканический центр знаменателен совместным проявлением магм базальтового и трахибазальтового составов, представленных базальт-андезитовой и трахибазальт-трахиандезитовой сериями. Делается вывод о генетической автономности сосуществующих родительских магм, генерированных в разных глубинных источниках области верхней мантии. Разнообразие составов вулканитов обязано многостадийной пространственно-временной кристаллизационной дифференциации магм и смешению последних в промежуточных очагах.
Флоренский К.П. К вопросу об изучении вулканических газов // Труды Лаборатории вулканологии АН СССР. 1958. № 13. С. 160-165.
Франц Юльевич Левинсон-Лессинг (1861-1939). 1941. 55 с.
Фролова М.Л. Район Кроноцкой сопки и вулкана Крашенинникова // Вулканы и геотермы Камчатки. Материалы IV Всесоюзного вулканологического совещания. 1974. С. 193-223.
Хедж К.Е., Горшков Г.С. Изотопный состав стронция вулканических пород Камчатки // Доклады АН СССР. 1977. Т. 233. № 6. С. 1200-1203.
Хренов А.П. Исследование вулканов методами дистанционного спутникового зондирования // Земля и вселенная. 2011. Вып. 5. С. 12-22.
Хренов А.П. Современный базальтовый вулканизм Камчатки (результаты аэрокосмических и петрологических исследований). 2003. Автореф. дисс. докт. геол.-мин. наук. 48 с.
Хренов А.П., Богатиков О.А., Дрознин Д.В., Лексин А.Б., Маханова Т.М. Трехмерные цифровые модели вулканов по материалам радиолокационных измерений (SRTM) // Доклады Академии наук. 2005. Т. 402. № 1. С. 71-75.





 

Рекомендуемые браузеры для просмотра данного сайта: Google Chrome, Mozilla Firefox, Opera, Yandex. Использование другого браузера может повлечь некорректное отображение содержимого веб-страниц.
 
Условия использования материалов и сервисов Геопортала

Copyright © Институт вулканологии и сейсмологии ДВО РАН, 2010-2019. Пользовательское соглашение.
Любое использование либо копирование материалов или подборки материалов Геопортала может осуществляться лишь с разрешения правообладателя и только при наличии ссылки на geoportal.kscnet.ru
 
©Design: roman@kscnet.ru