Main Bibliography
 
 Bibliography
Volcano:

 
Records: 2145
Pages:  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
Гавриленко Г.М. Вулкан Мутновский проснулся // Природа. 2000. № 12. С. 41-43.
Гавриленко Г.М. Гидрологическая модель кратерного озера вулкана Малый Семячик (Камчатка) // Вулканология и сейсмология. 2000. № 6. С. 21-31.
Гавриленко Г.М. Подводная вулканическая и гидротермальная деятельность как источник металлов в железо-марганцевых образованиях островных дуг / Отв. ред. Авдейко Г.П. 1997. 164 с.    Annotation
Различным аспектам современного морского железо-марганцевого рудообразования посвящена обширная литература. Однако работ, касающихся изучения этого процесса в пределах островных дуг Мирового океана, очень мало. Данная работа частично восполняет этот пробел. В монографии приводится большой объем оригинальных данных по комплексному изучению активных подводных вулканов и зон гидротермальной деятельности островных дуг Тихого океана: Алеутской, Курильской, Марианской, Кермадек и др. Все приведенные автором материалы свидетельствуют о значительной роли подводной вулканической деятельности в пределах современных островных дуг и, в частности, свидетельствуют о преимущественно вулканогенном источнике рудных элементов в железо-марганцевых образованиях, формирующихся на их подводных склонах.
Гавриленко Г.М., Двигало В.Н., Фазлуллин С.М., Иванов В.В. Современное состояние вулкана Малый Семячик (Камчатка) // Вулканология и сейсмология. 1993. № 2. С. 3-7.
Гавриленко Г.М., Зеленский М.Е., Муравьев Я.Д. Подвижка ледника в северо-восточном активном кратере вулкана Мутновский (Камчатка) в 1996-1998 гг.: причины и последствия этого явления // Вулканология и сейсмология. 2001. № 2. С. 18-23.
Гавриленко Г.М., Мельников Д.В. Пятнадцать лет из жизни вулкана Мутновского // Природа. 2008. № 2. С. 54-58.
Гавриленко Г.М., Таран Ю.А., Черткова Л.В., Гричук Д.В. Геохимическая модель гидротермальной системы вулкана Ушишир (Курильские о-ва) // Вулканология и сейсмология. 1993. Т. 15. № 1. С. 63-79.    Annotation
В кратере вулкана Ушишир, который представляет собой замкнутую бухту, соединенную с океаном узким и мелким проливом, сосредоточена мощная газогидротермальная деятельность. По составу термальные воды разбиваются на две группы: 1 - термальные воды морского происхождения, с высокой минерализацией, измененные за счет высокотемпературного взаимодействия с породой; 2 - воды морского происхождения, нагретые в приповерхностных условиях и смешанные с пресными метеорными водами. Применение ионной и газовой геотермометрии, а также графиков смешения в координатах Na - (_к и С1 - %а-К позволяет предположить, что термальные выходы питаются из пароводяного геотермального резервуара с температурой ~260°С. Общая минерализация флюида в равновесной зоне 23 г/л, давление СО2 ~ 4 бар. Расчеты равновесного состава раствора в закрытой системе морская вода - андезит показывают, что наблюдаемые концентрации магния могут быть сформированы в широком интервале температур, но при малых (ниже 0,01) отношениях порода/вода. Наиболее вероятно переуравновешивание раствора при температурах 170-200°С в близповерхностных условиях. Основная разгрузка осуществляется в зоне пересечения кольцевого и линейных разломов, причем по кольцевому разлому разгружаются в основном газ и нагретые за счет конденсации пара грунтовые воды.

High hydrothermal activity is concentrated in the crater of Ushishir volcano which represents an almost closed bay connected with the ocean through a narrow and shallow strait. In their composition the thermal waters can be divided into two groups: (1) thermal waters of sea origin of high mineralization altered as a result of high-temperature interaction with rocks and (2) waters of sea origin heated in the near-surface conditions and mixed with fresh meteoric water. Ion and gas geothermometry as well as mixing plots in Na - 1ма_к and CI - coordinates suggest that these thermal vents are fed by steam-water geothermal reservoir with temperature of about 260°C; mineralization of the fluid in equilibrium zone is 23 g/l, C02 pressure being about 4 bar. Calculations of the equilibrium solution composition in the closed "water-andesite" system indicate that the observed Mg concentration could be formed in a wide temperature range but at low, lower than 0,01, mass rock-water ratios. Reequilibration of the solution at temperatures of 170-200°C in the near-surface conditions is most probable. The main discharge takes place primarily in the intersection zone of the ring-shaped and linear faults. Through the ring-shaped fracture mostly gas and steam-heated waters are discharged.
Гавриленко Г.М., Черткова Л.В., Таран Ю.А. Гидротермальная система вулкана Ушишир // Мелководные газогидротермы и экосистема бухты Кратерной (вулкан Ушишир, Курильские острова). 1991. Т. 1. С. 13-44.
Галимов Э.М., Севастьянов В.С, Карпов Г.А., Шилобреева С.Н., Максимов А.П. Алмазы в продуктах извержения вулкана Толбачик (Камчатка, 2012–2013 гг.) и механизм их образования // Геохимия. 2016. № 10. С. 868-872. doi: 10.7868/S0016752516100034.    Annotation
Происхождение алмазов, найденных в лаве и пепле недавнего извержения (2012–2013 гг.) вулкана Толбачик на Камчатке, загадочно. В минеральном составе вмещающих пород нет никаких признаков существования высокого давления, которое необходимо для образования алмазов. Мы изучили изотопный состав углерода алмазов и дисперсного углерода в лаве Толбачика, который мог служить субстратом для синтеза алмазов, и установили, что они схожи. Есть свидетельства того, что формирование алмазов Толбачика связано с динамикой флюида. На основании полученных результатов предполагается, что микроалмазы Толбачика образовались в процессе кавитации, возникшем при быстром движении вулканического флюида. Ранее нами была показана теоретическая возможность образования алмазов в процессе кавитации, и эта гипотеза была подтверждена экспериментально. Ультравысокое давление при кавитации создается в локальных точках (схлопывающиеся пузырьки); при этом давление окружающей среды не является определяющим для синтеза алмаза. Условия возникновения кавитации достаточно обычны в геологических процессах. Поэтому микроалмазы подобного происхождения могут быть распространены в природе гораздо шире, чем это предполагалось ранее.

The origin of diamonds in the lava and ash of the recent Tolbachik eruption of 2012–2013 (Kamchatka) is enigmatic. The mineralogy of the host rocks provides no evidence for the existence of the high pressure that is necessary for diamond formation. The analysis of carbon isotope systematics showed a similarity between the diamonds and dispersed carbon from the Tolbachik lava, which could serve as a primary material for diamond synthesis. There are grounds to believe that the formation of Tolbachik diamonds was related to fluid dynamics. Based on the obtained results, it was suggested that Tolbachik microdiamonds were formed as a result of cavitation during the rapid movement of volcanic fluid. The possibility of cavitation-induced diamond formation was previously theoretically substantiated by us and confirmed experimentally. During cavitation, ultrahigh pressure is generated locally (in collapsing bubbles), while the external pressure is not critical for diamond synthesis. The conditions of the occurrence of cavitation are rather common in geologic processes. Therefore, microdiamonds of such an origin may be much more abundant in nature than was supposed previously.
Галимов Э.М., Севастьянов В.С., Карпов Г.А., Шилобреева С.Н., Максимов А.П. Микрокристаллические алмазы в океанической литосфере и их возможная природа // Доклады Академии наук. 2016. Т. 469. № 1. С. 61-64. doi:10.7868/S0869565216190166.





 

Recommended browsers for viewing this site: Google Chrome, Mozilla Firefox, Opera, Yandex. Using another browser may cause incorrect browsing of webpages.
 
Terms of use of IVS FEB RAS Geoportal materials and services

Copyright © Institute of Volcanology and Seismology FEB RAS, 2010-2019. Terms of use.
No part of the Geoportal and/or Geoportal content can be reproduced in any form whether electronically or otherwise without the prior consent of the copyright holder. You must provide a link to the Geoportal geoportal.kscnet.ru from your own website.
 
©Design: roman@kscnet.ru